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Abstract

We consider the problem faced by a durable good monopolist who can allocate a

single good at any time, but is uncertain of buyers’ values and temporal preferences for

receiving the good. We derive conditions under which it is optimal for the monopolist

to ignore heterogeneity in buyers’ discount factors; for example, discriminating on

discount factor is not optimal when buyers with higher values discount future receipt

of the good at a lower rate. These conditions also apply when sellers face ambiguity

regarding buyers’ discount factors. Our results provide a novel justification for temporal

nondiscrimination when the seller is incompletely informed about buyers’ temporal

preferences.
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1 Introduction

Many economic models of dynamic pricing allow buyers to arrive over time, but assume

that buyers have common preferences for future payoffs.1 In such a model, the optimal

pricing mechanism is necessarily non-discriminatory with respect to temporal preferences

for two buyers with the same arrival characteristics, because there is no variation on which

to discriminate. Unsurprisingly, empirical studies find that discount rates vary across the

population (Mischel et al., 1989; Kirby and Maraković, 1995; Green and Myerson, 2004;

Hakimi, 2013; Chan, 2017) and even vary across commodities for a given individual (Ubfal,

2016). This variation allows for the possibility that the seller might profit from screening on

temporal preferences and hence the possibility that standard approaches to dynamic pricing

may leave some rents on the table. In this paper we study conditions under which screening

on time preferences is feasible but unprofitable for a seller of a durable good. Our results

show when optimal mechanisms under the assumption of homogeneity in time preferences

remain optimal with the introduction of heterogeneity.

Specifically, we consider the problem faced by a durable-good monopolist who under-

stands that buyers have heterogeneous time preferences but is uncertain of the rate at which

the buyer discounts her future value for the good, and explore the possibility that this

seller might (optimally) implement a mechanism that does not discriminate along temporal

preferences. We start from the simple observation that even when potential buyers have

heterogeneous discount factors, it remains feasible for the seller to use a mechanism which

does not discriminate on discount factor. In other words, the seller is free to ignore this het-

erogeneity. We then take a candidate nondiscriminatory mechanism — optimal with respect

to a common discount factor — and apply tools from the theory of linear programming to

obtain conditions under which this candidate mechanism is optimal when buyers have het-

erogeneous, privately-known discount factors. That is, we describe conditions under which

the seller optimally ignores heterogeneity in temporal preferences.2

We give conditions under which the seller does not discriminate on discount factor; these

conditions can be stated simply, and allow for a broad set of statistical relationships between

buyers’ discount factors and valuations. In our model, buyers arrive over time and have

1Notable exceptions, in which buyers do not share a commonly-known discount rate, include Pai and
Vohra (2013) and Mierendorff (2016), in which buyers have identical discount factors but heterogeneous
deadlines for consumption. A separate thread of literature in public finance considers the effect of temporal
preference heterogeneity on optimal tax policy; see, e.g., Diamond and Spinnewijn (2011), Farhi and Werning
(2013), and Golosov et al. (2013).

2In a related model where buyers have heterogeneous discount factors that are common knowledge, there
is generically a distinct optimal mechanism for each discount-type; see, e.g., Board and Skrzypacz (2016).
To streamline exposition, when we discuss buyers with heterogeneous temporal preferences we consider only
the case where buyers have private information about their preferences.
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private information about both their initial valuation for the good and their discount factor.

We show that if these two pieces of information are positively related, in the sense of first-

order stochastic dominance, it is optimal for the seller to ignore heterogeneity in discount

factors and discriminate only on initial valuation and arrival time. The seller does this by

using a mechanism that would be optimal if all buyers had the same discount factor as

herself. In plain language, the seller does not use information about buyers’ discount factors

if buyers with high values tend also to be more patient.3

Before further discussing our results we lay out our economic model. In our model,

a seller with a single unit of a durable good faces a stream of buyers who arrive over an

infinite horizon.4 In each period the seller observes each new arrival, but buyers are privately

informed of both their (initial) valuation and their discounted future valuations.5 We assume

that the seller can commit to a sales mechanism ex ante, and that the buyers’ types are i.i.d.

draws from a finite set, but our arguments require few restrictions beyond these. Importantly,

our model allows for the set of types and the statistical relation between value and discount

factor to be arbitrary.

Our main results show that when buyers with higher values also willing to wait longer for

the good, screening on buyers’ temporal preferences does not improve the seller’s revenue.

The intuition behind these results is best understood by weighing the benefits of discrim-

inating on temporal preferences against the costs. As is typical in the study of optimal

sales mechanisms, the virtual value of a buyer — the buyer’s value, adjusted downward to

account for information rents — can be understood as a measure of the marginal revenue

available from that buyer (Bulow and Roberts, 1989). In our model, the difference between

a buyer’s conditional virtual value, which we define as the virtual value of a buyer with a

known discount factor, and their average virtual value, which is the virtual value of a buyer

after integrating out the discount factor, determines the improvement in marginal revenue

to the seller from increasing the allocation for this particular buyer. The seller weighs this

improvement in revenue against the implicit cost of increasing this buyer’s allocation, which

enters through other buyers’ incentive constraints. Intuitively, when the seller increases the

allocation of one buyer type, she must also increase the allocation for all buyer types who

3By “more patient,” we mean that the buyer discounts future receipt of the good at a lower rate.
Similar to our definition, Pai and Vohra (2013) and Mierendorff (2016) define buyers as less patient the more
immediate is their exogenous purchase deadline.

4Our results are unchanged if arrivals are stochastic. In particular, the seller’s problem is the same
whether buyers arrive with probability less than one, or if buyers always arrive but may have value zero with
nonzero probability.

5We constrain attention to buyers who discount future receipt of the good at an exponential rate (Samuel-
son, 1937). A working version of this paper provides results for buyers who are potentially non-exponential
discounters.
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want to mimic that type. Unless conditional virtual values are equal to average virtual values

for all types,6 there are discount types the seller might screen to improve revenue relative to

the nondiscriminatory mechanism. The seller will not separate these types if, in order to do

so, they lose sufficient revenue from increasing the utility of the mimicking types.

Determining which types will want to mimic which other types (i.e., which incentive con-

straints bind), and hence which allocations need to be adjusted in response to a change in

one type’s allocation, is a famously difficult question in multidimensional mechanism design.

However, due to the nature of the question we ask and the methods we use to answer it,

we are able to prove our results without ever identifying the set of binding constraints.7

We start from the observation that the candidate mechanism, which ignores heterogeneity

in discount factors, is feasible and respects incentive constraints. To prove that it is opti-

mal we then need only identify a subset of incentive constraints under which it is optimal.

Following duality results in linear programming, it is sufficient for some subset of incentive

constraints to imply values for the dual variables (or multipliers) under which the appro-

priate complementary slackness conditions are satisfied. In other words, optimality of the

candidate nondiscriminatory mechanism is equivalent to resolving the question of whether a

set of linear inequalities has a solution, which is a well-understood problem.

Our main result, Theorem 1, shows that the nondiscrimination is optimal when a condi-

tion relating the conditional and average virtual values of each type is satisfied. We derive

this result by showing that if we only include downward incentive constraints, the comple-

mentary slackness conditions yield a system that is equivalent to a standard problem on the

existence of a feasible flow in a network.8 Once the analogy is established, the argument

we use is an immediate consequence of Gale’s feasible flow theorem (Gale, 1957). Relating

conditional and average virtual values is natural given the structure of the problem, but the

condition in Theorem 1 can be difficult to interpret. We therefore show that this condition

is implied by a simple statistical condition, given in Corollary 1, which requires that the dis-

tribution of discount factors is increasing in the buyer’s valuation in the sense of first-order

stochastic dominance. Intuitively, when discount factor and valuation are positively related,

buyers with higher discount factors are more likely to have higher values and consequently

6Conditional virtual values equal average virtual values if and only if discount factors are independent
of valuations.

7It is well-known that incentive constraints in multidimensional mechanism design problems might bind
in multiple “directions,” meaning multiple incentive constraints involving the same type might bind. Because
the type space in our problem is finite and non-convex, we also cannot rule out a priori that non-local incentive
constraints bind at the optimal solution (Carroll, 2012). Our approach does not rely on eliminating either
of these possibilities.

8The downward constraints in our model are the ones that prevent types with higher willingness to pay
in every period from mimicking those with lower willingness to pay. In Section 4 we allow for arbitrary
incentive constraints to bind.
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obtain higher information rents, because their information rents derive from the ability of

types with even higher values to mimic them. In other words, under the conditions presented

in Theorem 1 or Corollary 1, when the seller wants to increase the allocation of some type,

she must also — through binding downward incentive constraints — increase the allocation

of higher types, who are likely to have larger information rents and hence reduce the seller’s

average revenue.

An immediate consequence of our analysis is that a seller who is uncertain of the statistical

relationship between value and patience should optimally rely on a temporally nondiscrimi-

natory mechanism, so long it is plausible that our main conditions are potentially satisfied.9

In this sense the ambiguity surrounding heterogeneity in individual discount factor (see our

discussion above) is self-supporting: sellers with little knowledge of the joint distribution

of value and patience may optimally not discriminate on temporal preference, and their

sales will contain no information about the joint distribution of value and patience. Our

results are therefore consistent with a lack of temporal screening by sellers of durable goods.

Practically, our results show that sellers should not use the passage of time to screen buyers

when value and patience are positively related, or when an uncertain, ambiguity-averse seller

believes that value and discount factors might be positively related.

Nondiscrimination on discount factor is optimal when any one of our statistical conditions

is satisfied.10 Our results therefore provide a microfoundation for the workhorse assumption

of a commonly-known discount factor. A corollary to our results is that if an optimal

mechanism does screen on discount factor, our statistical conditions must not hold. Since

the statistical relationship between value and discount factor varies across individuals and

goods, our results are consistent with the observation that some markets employ temporal

discrimination, while many others do not.11

Finally, our results contribute to the ongoing study of why simple mechanisms can persist

in relatively complicated settings. A natural reading of the multidimensional mechanism

design literature suggests that complete solutions are elusive, and that optimal mechanisms

can be unwieldy and complicated. Indeed, in our model the space of available mechanisms —

which may discriminate on both value and temporal preference — is complex. Nonetheless,

the presence of temporal incentive constraints drives allocation away from utilization of this

9Carroll (2017) establishes a version of this claim for the case where the seller knows the marginal
distributions of buyers’ types but is of uncertain the joint distribution. In our analysis, the seller does not
even need to know the marginal distribution of buyers’ discount rates.

10While it does not discriminate on temporal preferences, the optimal mechanism does discriminate on
arrival time. In particular, the optimal mechanism sells to a given buyer either never or immediately upon
arrival.

11Ubfal (2016) shows that discount rates may differ across goods for a given individual. Thus our condi-
tions may be satisfied for some commodities and not for others.
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dimension. That is, in spite of the rich set of available mechanisms, full consideration of

agents’ incentives encourages the use of a relatively simple sales mechanism, which does not

make use of all (or even most) of the information potentially available to the designer. We

believe the interaction between incentive constraints and simplicity merits further study.

This paper proceeds in Section 2 by defining our model. Section 3 establishes our main

result, and Section 4 extends the analysis to allow for arbitrary incentive constraints on

discount factor. Section 5 considers the optimal mechanism when the seller faces ambiguity

regarding the distribution of temporal preferences. Related literature is deferred to Section 6.

2 Model

A seller offers one unit of an indivisible good for sale to a sequence of buyers. Time is

discrete, t ∈ {0, 1, . . . , }, and allocation may take place in any period. The seller commits to

a mechanism in the first period, t = 0.

Buyers arrive over time. There are n kinds of buyers, i ∈ I = {1, . . . , n}, and a buyer

of kind i arrives in each period.12 Where there is no risk of confusion, we refer to a buyer

of kind i simply as buyer i. A buyer who arrives in period τ remains until the good is

allocated (at which point the game ends). A buyer of kind i who arrives at time τ has

a two-dimensional type (vi, δi) ∈ V i × Di ⊂ [0, 1]2. The buyer discounts consumption t

periods in the future by a factor δti . We refer to vi as the buyer’s value type and δi as her

discount type. Buyers thus differ in terms of the value they would receive from receiving the

good immediately, and in terms of the rate at which this value depreciates over time. We

assume that all players discount future monetary transfers according to the common factor

β ∈ (0, 1).13 Each buyer’s utility is quasilinear in expected transfers, and if her allocation

and payments are q = (qt)
∞
t=τ and p = (pt)

∞
t=τ respectively her interim utility upon arrival is

u (q, p| v, δ) =
∞∑
t=τ

δtqtv −
∞∑
t=τ

βtpt.

We assume that the support of types V i ×Di is finite, and for simplicity we assume further

that there is ε > 0 so that V i = V ≡ {0, ε, . . . , 1 − ε, 1}. The buyer’s (value-relevant) type

12A working version of this paper assumed that a buyer of kind i arrives with probability gi in each period.
The stochastic-arrival model can be embedded in our current model, allowing a buyer with kind i to have
value 0 with probability gi.

13This distinction between discounting future consumption and discounting future monetary transfers is
also made in Board and Skrzypacz (2016), who assume in their main specification that buyers discount their
future consumption value but not future transfer amounts. Since we work with an infinite horizon, we also
introduce a discount factor for monetary payments that is strictly less than one.

6



space is Θi ≡ V ×Di. The realized type (vi, δi) ∈ Θi is known only by agent i, and buyers’

types are independently distributed. To distinguish random variables, we add a tilde. For

example, θ̃i = (ṽi, δ̃i) is the random variable corresponding to buyer i’s type, and τ̃ is the

random variable corresponding to her arrival time.

We assume that each buyer’s private type (v, δ) is statistically independent of her arrival

time τ , and we define f i(v, δ) to be the (commonly known) probability that buyer i has

type (v, δ).14 Let f i(v) ≡
∑

δ∈Di f i(v, δ) so that F i(v) ≡
∑

v′≤v f
i(v′) is the cumulative

(marginal) distribution of valuation types for buyer i. Similarly, let f i(δ) ≡
∑

v∈V f
i(v, δ)

and f i(v|δ) ≡ f i(v, δ)/f i(δ) so that F i(v|δ) ≡
∑

v′≤v f
i(v′|δ) is the cumulative (marginal)

distribution of valuation types for buyer i, conditional on her having discount type δ. Define

f i(δ), f i(δ|v), F i(δ), and F i(δ|v) analogously. We use EΘi for the expectation taken with

respect to buyer i’s random type.

In the symmetric case, there are Θ and f such that Θi = Θ for all i ∈ I, and f i(v, δ) =

f(v, δ) for all (v, δ) ∈ Θ. When discussing the symmetric case, we omit the i subscripts and

superscripts.

2.1 Mechanisms

Because the seller commits to a mechanism ex ante, the revelation principle applies. It

is without loss of generality to consider direct mechanisms in which the buyers’ reported

types determine the probabilities of receiving the good in each period as well as expected

payments to be made to the seller. We let qit(v, δ, τ) denote the (interim) probability that

buyer i receives the good in period t having arrived in period τ and reported the type (v, δ).

We use qi(v, δ, τ) to indicate the vector of probabilities across time periods, from arrival

time τ onward. We assume without loss of generality that the seller collects a payment of

pi(v, δ, τ) from the buyer who reports the type (v, δ) immediately after arriving in period τ

and regardless of whether the good is allocated in period τ or later.15 If buyer i has type

(v, δ) and arrives in period τ , and reports the type (v′, δ′), her expected payoff from the

mechanism is therefore

ui (v′, δ′|v, δ, τ) ≡
∞∑
t=τ

δtqit (v
′, δ′, τ) v − pi (v′, δ′, τ) .

14We distinguish the buyer’s exogenously-determined arrival time τ from the passage of clock time t. The
former is a fundamental characteristic of an agent, the latter is a tool to be possibly employed by the seller.

15This is without loss because the buyers and seller share the monetary discount factor β and so neither
can gain relative to the other by delaying payment.
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We use ui(v, δ, τ) ≡ ui(v, δ|v, δ, τ) for the equilibrium payoff of the type (v, δ) bidder who

arrives in period τ .

2.2 The seller’s problem

Our analysis considers when it is optimal for the seller to ignore buyers’ discount types when

allocating the good. If a mechanism depends only on buyers’ value types and not on their

discount types, we say that it does not temporally discriminate. In our model, the optimal

mechanism without temporal discrimination is a series of auctions with time-independent

reserve prices, and a buyer has a positive probability of receiving a good only in the period

in which she enters the mechanism.16

The general revenue maximization problem is

max
{qi,pi}i∈I

∑
i∈I

∞∑
τ=0

EΘi

[
βτpi

(
ṽ, δ̃, τ̃

)]
s.t. ui (v, δ, τ) ≥ ui (v′, δ′|v, δ, τ) ∀i ∈ I, τ ∈ T, (v, δ) ∈ Θi, (v′, δ′) ∈ Θi (IC)

ui (v, δ, τ) ≥ 0 ∀i ∈ I, τ ∈ T, (v, δ) ∈ Θi, (IR)

qi is feasible. (F)

Since we formulate the problem using interim allocation probabilities and payments, we

require a set of feasibility constraints on the allocation probabilities qit(v, δ, τ). By definition

it must be that 0 ≤ qit(v, δ, τ) ≤ 1 for all t, and 0 ≤
∑

t q
i
t(v, δ, τ) ≤ 1 for all types (v, δ)

and arrival times τ . We also require that the probabilities be consistent with the type

distribution. Here we use the characterization of these feasibility conditions (the so-called

Border constraints) developed in Che et al. (2013), building on the previous work of Border

(1991, 2007).

The seller’s problem considers revenue maximization net of buyers’ incentives to reveal

their private information. As in other mechanism design contexts, the revenue a seller can

extract from a given type is captured by the type’s virtual value.

Definition 1. Given type (v, δ) ∈ Θi, buyer i’s conditional virtual value is

mi (v|δ) = v −
[
1− F i (v|δ)
f i (v|δ)

]
ε.

16See, e.g., Board and Skrzypacz (2016).
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Buyer i’s average virtual value is

mi (v) = EΘi

[
mi
(
ṽ
∣∣∣δ̃)∣∣∣ṽ = v

]
= v −

[
1− F i (v)

f i (v)

]
ε.

We assume that the average virtual value mi(·) is weakly increasing, and define v+i to

be the smallest value for which buyer i’s average virtual value is weakly positive. When the

seller does not temporally discriminate, the optimal mechanism is definable in terms of a

threshold v⋆i ≥ v+i , where

v⋆i = min

{
v′i : m

i (v′i) ≥ βE
[
max

{
mi (v′i) ,max

j∈I
mj (ṽ)

}]}
.

The cutoff value v⋆i is the value for which the seller is (nearly) indifferent between allocating

today and waiting for new arrivals tomorrow.17 Because the value-relevant type (v, δ) is

independent of arrival time τ , virtual values (and hence thresholds v⋆i ) do not depend on

arrival time. In slight abuse of notation, we write v⋆i (v) = max{v, v⋆i } to be the larger of v

and v⋆i .

To provide conditions under it is optimal to not temporally discriminate even though

allocation of the good is feasible in any period, we begin with a few simple observations.

It is obvious that temporal nondiscrimination is feasible. To prove that it is optimal, it is

sufficient to find a subset of the IC, IR and F constraints under which it is optimal, since any

ignored constraints are satisfied implicitly. That is, temporal nondiscrimination is incentive

compatible, individually rational, and feasible, so if it is uniquely optimal given a subset of

the constraint set, it is uniquely optimal given the full constraint set. Our results in the

following section are primarily distinguished by the particular subset of constraints that we

choose to impose on the seller’s problem.

3 Analysis

We now derive results establishing conditions under which temporal nondiscrimination is

optimal. We first provide a detailed intuitive argument in a simplified, semi-static model in

which all potential buyers are present at time t = 0. This simplification removes the need

to consider the possibility that the seller would rather not sell today in hopes of drawing

a better set of buyers tomorrow. The crux of our analysis is the allocational feasibility

constraint (Border, 1991). When we moving from the semi-static to the fully-dynamic model

the feasibility constraint changes but the intuitive arguments remain unchanged.

17For details, see equation (6) of Board and Skrzypacz (2016).
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3.1 Intuition from the semi-static model

To develop intuition, we first consider a semi-static model in which all potential buyers are

present at time t = 0.18 Aside from the presumption that there are no future arrivals, the

semi-static model is identical to our main model. For simplicity we restrict attention to the

symmetric case, where f i = f for all buyer kinds i.

In the semi-static model, the optimal temporally nondiscriminatory mechanism is a

canonical optimal auction (Myerson, 1981) without any future allocation, qt(v, δ) = 0 for

all t > 0 and all types (v, δ).19 To evaluate whether nondiscrimination is optimal, it is

therefore sufficient to consider whether a small deviation from the optimal static auction can

improve the seller’s profits. The optimal static auction allocates to all buyers whose average

virtual values are strictly positive and never allocates to buyers whose average virtual values

are strictly negative: q0(v, δ) > 0 if m(v) > 0, and q0(v, δ) = 0 if m(v) < 0.

Consider a small deviation from the optimal static mechanism, which increases the allo-

cation allocation probability of type (v, δ) in period t > 0 by amount ξ > 0. In the static

mechanism, the IC constraints bind from higher values to lower values, and increasing the al-

location of type (v, δ) requires increasing the allocation of all types (v′, δ) with value v′ > v.20

However, it also requires increasing the allocation of all more-patient types (v, δ′) with δ′ > δ:

because the less-patient type (v, δ) is willing to accept the adjusted allocation, and all dis-

count types receive the same allocation in the temporally nondiscriminatory mechanism, the

more-patient type (v, δ′) will strictly prefer the adjusted allocation. In turn, all higher-value,

more-patient types must have their allocations improved, or incentive compatibility will be

violated.

The additional revenue obtained by increasing the allocation to value-type v, net of in-

centive compatibility for all value-types v′ > v, is the virtual value m(v); similarly, the

additional revenue obtained by increasing the allocation to type (v, δ), net of incentive com-

patibility for all types (v′, δ) with v′ > v, is the conditional virtual value m(v|δ). As argued
above, incentive compatibility with respect to discount rate means that increasing the allo-

cation to type (v, δ) is also associated with increasing the allocation to all types (v, δ′) with

18This is analogous to assuming that the common monetary discount rate β → 0.
19Under temporal nondiscrimination, the buyer’s allocation can depend only on her value type and not

on her discount type. Because buyers discount the future (we allow δ = 1, but since there are at least two
discount types there must be a discount type δ < 1) deferring allocation into the future strictly reduces the
expected value of consumption, and in turn reduces revenue. Then the optimal temporally nondiscriminatory
mechanism allocates immediately and depends only on the buyers’ value types.

20We say that the IC constraint binds from one type to another if the constraint which prevents the
former from misreporting as the latter is binding. If the IC constraints from higher values to lower values
are not binding a small increase in transfers can improve the seller’s revenue without violating incentive
compatibility.
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δ′ > δ, and the additional revenue from this increase is m(v, δ′). Temporal discrimination

is only (potentially) profitable if the expected benefit from increasing the allocation to all

more-patient types, net of incentive compatibility, is positive and yields higher revenue ben-

efit than increasing the allocation of any buyer with value-type v, irrespective of discount

rate. That is, temporal discrimination of type (v, δ) is potentially strictly beneficial only if

EΘ

[
m
(
ṽ
∣∣∣δ̃)∣∣∣ṽ = v, δ̃ ≥ δ

]
> max {0,m (v)} . (1)

Then temporal nondiscrimination is optimal if inequality (1) does not hold for any type

(v, δ). Our main result, Theorem 1, is an algebraic rearrangement of this condition.

Note that this derivation presumes that the incentive constraints are binding only from

higher types to lower types, and increasing the allocation of a type (v, δ) only requires

increasing the allocations of types (v′, δ′) ≥ (v, δ). It does not consider the possibility

that the incentive constraint is binding from a lower-value, more-patient type to a higher-

value, less-patient type.21 Accounting for these “diagonal” constraints strenthens, rather

than weakens, our results: expanding the set of incentive constraints considered raises the

implicit costs of increasing the allocation of type (v, δ), and if increasing this allocation does

not improve revenue given a smaller set of constraints it will not improve revenue given a

larger set of constraints. Thus if discrimination is not optimal with fewer constraints, it

continues to not be optimal with more constraints.

Having built intuition from the semi-static case, we next formalize our results in the

full model with dynamic arrivals. The preceding intution suggests that, given an arrival

time τ , the seller will only temporally discriminate against buyers who arrive at time τ

by potentially “calling back” buyers at a later time after subsequent arrivals have proved

unprofitable. However, as shown in Board and Skrzypacz (2016), it is never optimal for the

seller to recall buyers who are tentatively unallocated, and the threshold type for allocation

remains constant over time. Thus inequality (1) remains valid in the case with dynamic

arrivals.

3.2 Formal results for the fully-dynamic model

We now return to the fully-dynamic model set out in Section 2. We make use of the following

definition our subsequent results. For a buyer i with type (v, δ) ∈ Θi, define the seller’s

21Deferring the consumption of an impatient buyer while holding their utility constant will improve the
utility a patient buyer obtains from the impatient buyer’s allocation. When values are similar and discount
rates are significantly different, the patient type may strictly prefer the impatient type’s deferred allocation,
even with a lower initial valuation v.
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incremental anticipated virtual value µi as

µi (v, δ) ≡
(
mi (v|δ)−mi

+ (v)
)
f i (v, δ) ,

where mi
+(v) = max{mi(v),mi(v⋆i )}.22 We define µi(v′, δ) = 0 for v′ /∈ V . The quantity

µi(v, δ) measures the difference between the virtual value of type (v, δ) and the (truncated)

average virtual value of types with the same value, weighted by the probability that (v, δ)

occurs. Note that

EΘ

[
mi
(
ṽ
∣∣∣δ̃)∣∣∣ṽ = v, δ̃ ≥ δ

]
−mi

+ (v) =
1

Pr
(
ṽ = v, δ̃ ≥ δ

)∑
δ′≥δ

µi (v, δ′) ,

and the partial sums of incremental anticipated virtual value correspond to the left-hand side

of inequality (1) above. That is, the partial sums of µi(v, δ) are the benefit associated with

increasing the allocation to type (v, δ), net of binding incentive constraints for higher-value,

more-patient types. The left-hand side is negative if and only if the right-hand summation

is negative, and the intuitive derivation and condition from the preceding subsection is

formalized in Theorem 1.

Theorem 1 (Optimality of nondiscrimination). Temporal nondiscrimination is optimal if

for all buyers i and all types (v, δ) ∈ Θi,∑
δ′≥δ

{
µi (v⋆i (v) , δ)− µi (v − ε, δ)

}
≥ 0. (2)

The primary complication in establishing Theorem 1 is that we do not know a priori

which IC constraints will bind at the optimal selling mechanism. The idea behind the proof,

given in Appendix A, is to first introduce dual variables (Lagrange multipliers) associated

with each of the IC and feasibility constraints. When temporal nondiscrimination is optimal,

we can assign feasible values to the dual variables so that a standard first-order condition is

satisfied. We then apply duality to construct a system of inequalities in these dual variables.

The system of inequalities represents the requirements imposed by complementary slack-

ness and feasibility on the dual linear program. Each inequality corresponds to a variable

qiτ (v, δ
i, τ). When there is a solution to the resulting linear system, temporal nondiscrimi-

nation is optimal.

The ensuing argument relies on an assignment of a value to the feasibility constraint. In

line with the intuition given above, we say that the shadow cost of the feasibility constraint

22Equivalently, we may write mi
+(v) = mi(v⋆i (v)).
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for type v is the average marginal value mi
+(v). That is, a slight slackening of the feasi-

bility constraint for value type v would increase the seller’s revenue by mi
+(v), which takes

into account the increased allocation to higher types associated with maintaining incentive

compatibility.

Having translated the conditions under which temporal nondiscrimination is optimal

to a system of inequalities in the dual variables, the next step is to determine conditions

under which this system has a feasible solution.23 We show in the proof of Theorem 1 that

when we consider the downward IC constraints — corresponding to more-patient buyers not

misreporting as less-patient buyers, as considered in the intuitive derivation — the problem

of determining whether this system of inequalities in the dual variables has a feasible solution

is isomorphic to the problem of determining whether there exists a feasible flow in a canonical

network flow problem. The network consists of nodes, which are identified with types on

our model, and arcs (directed links) that carry “flow,” where the flow between two types

with different discount types determines the value of the dual variable on the corresponding

IC constraints, and the flow between adjacent value types with identical discount types

determines the value of the dual variable on the corresponding constraint ensuring weakly

positive allocations. The former dual variable can be interpreted as the shadow price of

loosening an IC constraint between two types.24 In all, we show that the potentially complex

problem of determining which IC constraints bind in the optimal solution can be broken down

into a series of comparatively simple steps.

For one interpretation Theorem 1, note that a sufficient condition for (2) is∑
δ′≥δ

{
µi (v, δ′)− µi (v − ε, δ′)

}
≥ 0, ∀v ∈ V . (3)

This follows because summing (3) over all v′ ∈ {v, . . . , v⋆i (v)} gives inequality (2). Fixing a

value type v, summing (3) over v′ ≥ v+ ε yields −
∑

δ′≥δ µ
i(v, δ) ≥ 0, which is equivalent to

EΘ

[
mi

+ (ṽ)−mi
(
ṽ
∣∣∣δ̃)∣∣∣ṽ = v, δ̃ ≥ δ

]
≥ 0. (4)

That is, temporal nondiscrimination is optimal if average censored virtual values weakly ex-

ceed conditional virtual values, where the average is taken over all types more patient than

a given type. An optimal temporally nondiscriminatory mechanism will sell only to value

23In the primal problem, feasibility is a constraint on allocations. In the dual problem, feasibility is a
constraint on the sign of the dual variables, which must be weakly positive.

24The network flow argument in the proof involves results well-known within the network flow literature,
and our central insight is an application of Gale (1957). The results have the advantage of being straight-
forward to describe and understand, and the crux of our argument is in making appropriate definitions so
that the seller’s problem is represented as a network flow problem.
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types with positive average virtual value. An upper bound on the revenue lost, in compar-

ison to temporal nondiscrimination, by screening on type δ is given on the left-hand side

of (4).25 More directly, the seller can only improve revenue relative to the nondiscriminatory

mechanism by deferring the allocation of relatively patient buyers. When inequality (4) is

satisfied, profitable (for the seller) deferral of consumption requires the deferred buyers to

buy on worse terms than the relatively impatient buyers who buy immediately. As patient

buyers are at least as willing to consume in every period as impatient buyers, profitable

discrimination violates incentive compatibility, and is therefore not feasible.

The inequalities in (2) and (4) are given in terms of virtual values. While intuition from

virtual values is standard in the mechanism design literature, we show now that a simpler,

purely statistical condition is sufficient. For example, inequality (2) is satisfied if buyer types

with higher values are more likely to have higher discount types in the following sense.

Corollary 1 (Statistical condition for nondiscrimination). Temporal nondiscrimination is

optimal if, for all buyers i and all (v, δ) ∈ Θi, F i(δ|v) is nonincreasing in v.

The condition given in Corollary 1 can be understood as a first-order stochastic dominance

condition on the distribution of discount types in response to an increase in the valuation.

Corollary 1 also implies that temporal nondiscrimination is optimal when discount types are

common knowledge.26 When Corollary 1 is satisfied, value types are positively correlated

with discount types, but in general correlation is not sufficient for the optimality of temporal

nondiscrimination.

An example clarifies the relative strengths of Theorems 1 and Corollary 1.

Example 1. Suppose there is a single kind of buyer, n = 1, and that β ≈ 0.27 For

simplicity we rule out the possibility that the buyer’s value is zero, and the type space is

Θ = {1/2, 1}×{0, δ̂}, where δ̂ ∈ (0, 1]. The joint distribution F over valuation and discount

types is parameterized by probability π ∈ [0, 1] and is shown in Figure 1. If discount types

are common knowledge, the seller will offer a price of p⋆(0) = 1 to a buyer with discount

type δ = 0 and a price of p⋆(δ̂) = 1 to a buyer with discount type δ = δ̂ when π ≥ 1/2 and a

price of p⋆(δ̂) = 1/2 otherwise.

25Arrival times τ do not feature in any of these conditions, since the distribution of the value-relevant
type (v, δ) is independent of τ , and arrivals are identically distributed across time periods.

26This does not imply the “no haggling” result of Riley and Zeckhauser (1983). We assume that δi0 = 1
for all δi ∈ Di, so each buyer is willing to consume immediately, which rules out correlated random arrivals.
Our results are similarly distinct from the dynamic pricing literature; see our discussion of related literature
in Section 6.

27Because buyers make transfers upon arrival, the monetary discount rate β does not directly affect the
optimality of temporal nondiscrimination (though it may have an indirect effect through v⋆i ). Letting β ≈ 0
serves to encourage sale to the first buyer who arrives.
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Figure 1: The type distribution for Example 1.

Application of Theorem 1 gives that temporal nondiscrimination is optimal if

−µi

(
1

2

∣∣∣∣δ̂) ≥ 0 and − µi

(
1

2

∣∣∣∣0)− µi

(
1

2

∣∣∣∣δ̂) ≥ 0.

Straightforward calculation gives that temporal nondiscrimination is optimal when π ≥ 1/2;

see Appendix B for additional details. Intuitively, because the optimal sales mechanism is

independent of discount type when π ≥ 1/2, there is no incentive to screen buyers on their

discount types.

Applying Corollary 1, we find that F (δ|v) is nonincreasing in v when

2

2 + 3π
≤ 1

4− 3π
.

Then Corollary 1 shows that temporal nondiscrimination is optimal when π ≥ 2/3, which is

exactly when valuation and discount factor are weakly positively correlated. Since π ≥ 2/3 is

more restrictive than π ≥ 1/2, Theorem 1 is strictly more general than Corollary 1.

4 Generic misreports of discount rate

The proof of Theorem 1 considers only the ability of the seller to satisfy a subset of the

agents’ IC constraints, and not whether the seller wants to defer a particular type’s consump-

tion. Since deferring consumption exogenously reduces willingness to pay (when δ < 1), the

sufficient condition in Theorem 1 is overly strong. In this section we take a distinct analytical

approach, allowing for additional binding IC constraints and also adjusting for the seller’s

incentives, leading to a characterization distinct from our ealier results.

By allowing for all possible IC constraints to bind, including IC constraints from lower to

higher types and those between unordered types, the system of linear inequalities we obtain in

the proof of Theorem 2 no longer corresponds to a standard network flow problem. Theorem 2

thus necessitates an approach to feasibility distinct from that applied to Theorem 1. In this

case, we employ Farkas’ Lemma to derive a distinct sufficient condition for the optimality of
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temporal nondiscrimination.

Theorem 2 (Optimality of nondiscrimination′). The optimal mechanism does not temporally

discriminate if for all buyers i and all types (v, δ) ∈ Θi,

∑
j>1

{
(δij − δij−1)

1

ε

∑
k≥j

(
µi(v, δik)− µi(v − ε, δik)

)
+ (1− δij)

1

v
mi

+(v)f
i(v, δij)

}
≥ 0 (5)

where we index the discount types for buyer i in increasing order as δi1 < δi2 < · · ·.

Note that for v ∈ V with mi(v) > 0, condition (5) is strictly more general than condi-

tion (2). However, for v ∈ V with mi(v) < 0, condition (5) is neither more nor less general

than its equivalent in Theorem 1.

Although self-evidently more analytically complicated than our earlier results, intuition

for inequality (5) may be readily drawn from the discussion surrounding Theorem 1. In

particular, the difference µi(v, δ) − µi(v − ε, δ) represents the relative cost of increasing

the allocation of type (v − ε, δ). Inequality (5) adjusts this cost to account for the fact

that increasing the allocation to a given type in an incentive-compatible manner requires

increasing the allocation at some time t ≥ 1, and not at time t = 0; thus buyers’ discount

rates scale the incremental anticipated virtual values µ. Finally, there is an additional term

associated with the fact that discrimination must occur in some future period, resulting in

a revenue loss proportional to the minimum difference in temporal taste from period t = 0,

which is 1− δ.

Returning to Example 1 illustrates additional the power of Theorem 2.

Example 1 (continued). Recall that Theorem 1 implies that temporal nondiscrimination is

optimal when π ≥ 1/2, while Corollary 1 implies that temporal nondiscrimination is optimal

when π ≥ 2/3. Theorem 2 implies that temporal nondiscrimination is optimal when

π ≥ 1

2
, or

1

2
> π ≥ δ̂

1 + δ̂
, or

1

3
> π ≥ 4− δ̂ −

√
16− 32δ̂ + 25δ̂2

6
(
1− δ̂

) .

Intuitively, temporal nondiscrimination is optimal when patient buyers are sufficiently likely

to have high values, or when even patient buyers significantly discount the future (δ̂ ≈ 0).

The kink at π = 1/3 arises from the fact that, at π = 1/3, the optimal temporally nondis-

criminating mechanism goes from a posted price of p⋆0 = 1 (for π > 1/3) to a posted price of

p⋆0 = 1/2 (for π < 1/3). This relationship is depicted in Figure 2.

Remark 1. In this example, the seller will only engage in perfect temporal separation — that

is, will only allocate to distinct discount types in distinct periods — when δ̂ = 1. Otherwise,
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Figure 2: Optimal mechanisms in Example 1. Theorem 2 implies that temporal nondis-
crimination is optimal in all shaded regions. Theorem 1 is weaker in this example, and
only implies that temporal nondiscrimination is optimal in the right-hand regions, π ≥ 1/2.
Corollary 1 is weaker still.

even when temporal discrimination is optimal, the seller will offer patient buyers some prob-

ability of allocation in period t = τ and some probability of allocation in period t′ > τ , unless

patient buyers are infinitely patient. This occurs because when δ̂ < 1, deferring consumption

reduces the seller’s revenue; by shifting some (but not all) of the patient buyer’s consumption

to date t = 0, the seller can improve revenue while ensuring that the impatient buyer does not

want to misrepresent his discount type. Thus in interior of the unshaded region of Figure 2

the optimal mechanism sells to all buyers in period t = τ , and to patient buyers in period

t′ > τ .28

5 Ambiguous temporal preferences

In practice it may be difficult for the seller to evaluate the marginal distribution of discount

types, so we now consider the possibility that the seller knows only the marginal distribution

of value types. We abstract from buyer ambiguity aversion and assume there is a single kind

of buyer. The seller is ambiguity averse, and optimizes maxmin expected utility (Gilboa and

Schmeidler, 1989). Given a type distribution F , let Fv and Fδ be the marginal distributions

of value and discount types, respectively, and for the moment assume that the the seller

knows the marginal distribution of valuation types Fv and the support of discount types D,

but knows neither the joint distribution F nor the marginal distribution Fδ.
29 The seller

28Note that β does not factor in to the choice to temporally discriminate, since all transfers are made
immediately upon arrival and a buyer is guaranteed to arrive, g = 1.

29Carroll (2017) analyzes the case in which the seller knows the marginal distribution Fδ but not the joint
distribution F , and finds that (applied to our setting) temporal nondiscrimination is optimal. Madarász and
Prat (2017) show that a seller with a misspecified model can obtain better outcomes with a contingent profit-
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believes that the feasible set of joint distributions is F ⊆ {F̂ : F̂v = Fv and Supp F̂δ = D}.
The seller’s problem is30

max
{q,p}

inf
F∈F

∞∑
τ=0

EF

[
βτp

(
ṽ, δ̃, τ

)]
,

s.t. ui (v, δ, τ) ≥ ui (v′, δ′|v, δ, τ) ∀i ∈ I, τ, (v, δ) ∈ Θi, (v′, δ′) ∈ Θi (AIC)

ui (v, δ, τ) ≥ 0 ∀i ∈ I, τ, (v, δ) ∈ Θi, (IR)

qi is feasible. (AF)

Proposition 1 (Optimality of nondiscrimination with little information). Suppose that there

is F ∈ F that satisfies the condition of Theorem 1. Then temporal nondiscrimination is

optimal in the seller’s problem ambiguous temporal preferences.

When the statistical relationship between value and discount types is ambiguous, the

seller’s (minimum) expected revenue is weakly bounded above by the revenue arising under

any given type distribution, including those which satisfy Theorem 1. In this case, rev-

enue is strictly optimized with a temporally nondiscriminatory mechanism. Since temporal

nondiscrimination generates the same revenue regardless of the joint distribution of value

and discount types, the optimal mechanism does not temporally discriminate.

The condition of Theorem 1 is satisfied when there is a weakly positive statistical rela-

tionship between value and patience. Thus when the seller believes that discount types may

be independent of value types, temporal nondiscrimination is optimal.

Corollary 2 (Optimality of nondiscrimination when independence is plausible). Suppose

that there is F ∈ F such that value type and discount type are independent, F (v, δ) =

Fv(v)Fδ(δ). Then temporal nondiscrimination is optimal in the seller’s problem with am-

biguous temporal preferences.

6 Related literature and conclusion

Our model builds on work on dynamic pricing. Our buyers arrive independently over time,

a common assumption in the dynamic pricing literature. When buyers with symmetric and

commonly-known discount rates can choose when to purchase (but not when to arrive),

sharing scheme; by contrast, our seller suffers only from an incomplete understanding of the distribution of
patience, and does not need to hedge against unforeseen types. Assuming that the seller knows the set of
feasible discount types D simplifies analysis but is otherwise inessential to our results.

30Proposition 1 of di Tillio et al. (2016) holds in this setting, and the revelation principle applies.
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Board and Skrzypacz (2016) show that a gradually declining reserve price is optimal.31 Pai

and Vohra (2013) and Mierendorff (2016) consider the possibility that agents have privately-

known deadlines. A key distinguishing feature of our work is that the literature on dynamic

pricing asks how to optimally sell a good over time, while we ask when it is not optimal to

sell a good over time.

Our technical analysis ties most directly to previous work on bundling. Traditional

bundling models consider when it is optimal to package multiple goods (or attributes) to-

gether, and when it is optimal to sell them individually. McAfee and McMillan (1988)

consider the problem faced by a monopolist selling multiple goods to agents with multidimen-

sional types. Rochet and Choné (1998) show that in optimal multidimensional mechanisms,

there are typically collections of types receiving identical allocations. Manelli and Vincent

(2006) provide conditions under which bundling (i.e., identical allocations for all types) is

optimal, and Manelli and Vincent (2007) characterize the full set of optimal mechanisms

when types are multidimensional; Fang and Norman (2006) compare the seller’s preference

for full bundling versus separate sales, and Pycia (2006) shows that “simple” mechanisms

are generically nonoptimal.32 In our model, the set of goods corresponds to the ability to

allocate a fixed unit at different points in time, and a little more of tomorrow’s good comes

at the cost of a little less of today’s good. In mathematical shorthand, a dynamic allocation

of a single good is feasible if 0 ≤
∑

t qt ≤ 1, while the feasibility constraint in most bundling

analyses is 0 ≤ qk ≤ 1 for all goods k.33 This approach is distinct from, e.g., Basov (2001),

since our seller has a number of “goods” equal to the number of periods, which is infinite.

Our main result is closely related to Haghpanah and Hartline (2019), which gives con-

ditions under which a monopolist sells only a “grand bundle” of all products. An agent’s

initial value v in our model, obtainable by consuming upon arrival at time t = τ , corresponds

to the value for the grand bundle in Haghpanah and Hartline (2019), and their Theorem 1

corresponds to our Corollary 1. Our Theorem 1 is stronger than our Corollary 1 (see Exam-

ple 1), and our results are stronger in our context; otherwise, our results neither imply nor

are implied by theirs. Our approach to Theorem 2, via Farkas’ Lemma, is methodologically

distinct.

The proof of our main result follows from the observation that temporal nondiscrimina-

tion is feasible, regardless of the relationship between discount types and valuation types.

31Stokey (1979) finds a declining price curve only when the seller faces positive marginal costs which
decline over time. Riley and Zeckhauser (1983) show that, against a stream of buyers, the seller’s optimal
mechanism is a fixed price in each period.

32With a single buyer, an allocation is feasible in our model only if 0 ≤
∑

t qt ≤ 1. This contrasts the
feasibility constraint in standard bundling problems, 0 ≤ qt ≤ 1, and the simple mechanisms of Pycia (2006)
are infeasible in our context. See our discussion of Haghpanah and Hartline (2019) below.

33Pycia (2006) considers simple mechanisms, where the constraint is qt ∈ {0, 1}.
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This allows us to avoid the complication of evaluating which IC constraints bind. Border

(1991) and Border (2007) give conditions necessary for the implementation of a particular

outcome rule; we utilize the Border constraints to address the suboptimality of deferring allo-

cation to later periods. Previous work has examined which incentive constraints will bind in

optimal mechanisms (Carroll, 2012; Archer and Kleinberg, 2014; Mishra et al., 2016).34 Our

approach is distinct, in that we initially allow only the set of downward discount constraints

to bind and derive a condition for the optimality of temporal nondiscrimination given only

these constraints; adding unconsidered constraints back to the problem does not affect the

feasibility of immediate allocation and therefore does not affect the optimality of temporal

nondiscrimination.35 Our Theorem 2 expands the set of potentially-binding constraints and

obtains a sufficient condition which is neither weaker nor stronger than our main result.

6.1 Conclusion

Sellers in dynamic environments may be imperfectly aware of buyers’ temporal preferences.

We model a mechanism design problem in which buyers have private information about val-

ues and temporal preferences, and the seller can potentially improve revenue by screening

on buyers’ discount factors. We show that when values and discount factors are positively

related, the optimal mechanism ignores temporal preferences and allocates to a given buyer

either immediately upon arrival or never. Under these conditions, the optimal mechanism

can be found by studying the simpler problem in which all buyers share a commonly-known

average discount factor, the solution to which may be found in existing work (cf. Board and

Skrzypacz (2016)). Our results thus provide statistical conditions under which nondiscrim-

inatory mechanisms remain optimal in a world with heterogeneous time preferences. We

further show that when the seller has ambiguous beliefs regarding buyers’ temporal pref-

erences, a nondiscriminatory mechanism is optimal so long as it is plausibly optimal. Our

results suggest that the incentive constraints associated with complicated design settings

may imply that comparatively simple mechanisms are optimal. We believe this intuition

merits further study.

34In the related problem of dynamic contracting, Battaglini and Lamba (2019) show that local incentive
constraints are frequently insufficient for global incentive compatibility.

35Pavan et al. (2014) observe that incentive compatibility is easier to satisfy in dynamic models than in
static models. This follows from the slow revelation of private information in dynamic models, and is not at
odds with our finding that incentive constraints cause the seller to not screen on discount factor.
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A Proofs for Section 3 (Analysis)

A.1 Technical background: network flows

A network consists of a set of nodes, N , and a set of directed arcs, A, which may carry

“flow” between two nodes. A nonnegative flow across arcs is feasible if it satisfies node-
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specific requirements and any arc-specific capacity constraints. The specific feasible flow

theorem that we use in Theorem 1 is due to Gale (1957).36 Let g(x, x′) represent the flow

between two nodes x, x′ ∈ N (or the flow across the (x, x′) arc). Each arc has capacity

k(x, x′) ≥ 0, which limits the corresponding flow, and each node has a net demand of b(x).37

The feasible flow problem is to determine when there exists a flow in a network satisfying

the capacity constraints and the net demand requirements. Stated formally, we want to

determine when there exists a solution in g(x, x′) to the following problem.∑
{x′|(x′,x)∈A}

g(x′, x)−
∑

{x′|(x,x′)∈A}

g(x, x′) = b(x) ∀x ∈ N (6)

0 ≤ g(x, x′) ≤ k(x, x′) ∀(x, x′) ∈ A, (7)

where
∑

x∈N b(x) = 0. Gale (1957) provides the answer in the following result.

Theorem 3. There exists a solution, g, to the system in (6) and (7) if and only if∑
x∈X,x′∈X̄

k(x, x′) ≥
∑
x′∈X̄

b(x′) ∀X ⊆ N , (8)

where X̄ = N \X.

Intuitively, there is a feasible flow if and only if the capacity for sending flow from any

set of nodes, X, to its complement, X̄, exceeds the net demand of the receiving nodes.

A.2 Proof of Theorem 1

Proof of Theorem 1. We initially assume that the seller may only allocate to buyers in the

first T periods after they arrive, and later extend the analysis to the case where the seller

may allocate to a buyer in any period after she arrives. To begin, we respecify the IC and IR

constraints in the seller’s problem. For buyer i with type (v, δ, τ) consider all downward IC

constraints preventing the misreport of δ′ < δ; these constraints can be written as

ε
∑
t≥τ

δt−τQi
t (v, δ, τ) ≥ ε

∑
t≥τ

δ′t−τQi
t (v, δ

′, τ) +
∑
t≥τ

qit (v, δ
′, τ)

(
δt−τ − δ′t−τ

)
v,

where we define Qi
t(v, δ, τ) ≡

∑
w<v qt(w, δ, τ). The left- and right-hand sides of this in-

equality are interim utility to a buyer with type (v, δ) who reports type (v, δ′); these ex-

pressions arise from the IC constraints requiring truthful reporting of values in the optimal

36We report the version of this theorem stated as Theorem 6.12 of Ahuja et al. (1993). We have adjusted
the notation and the statement of the theorem.

37If b(x) < 0, x is a supply node, but we use the term net demand for both cases.
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temporally nondiscriminatory mechanism. Attach to each such constraint the dual variable

λi(v, δ, δ′, τ).38

Intuitively, the feasibility (Border) constraints in our problem will bind for sets of buyer

types that include all buyers with an equal or higher average virtual valuation.39 For buyers

i and j (possibly equal to i) value v ∈ V , and arrival time τ , define M ij
τ (v) by

M ij
τ (v) ≡

{
(v′, τ ′) : τ ′ < τ and v′ ≥ v⋆j , or τ ′ = τ and mj (v′) ≥ mi (v)

}
.

For a buyer j, the value type v′ and arrival time τ ′ ≤ τ are (jointly) in M ij
τ (v) if either the

buyer arrived strictly before time τ and had virtual value above the cutoff virtual value v⋆j ,

or if the buyer arrived at time τ and had virtual value above mi(v). That is, this buyer is in

M ij
τ (v) if they are more profitable for the seller, ignoring heterogeneity in discount factors.

The feasibility constraint that limits allocation to buyers with higher virtual values is, for

all v ∈ V and all arrival times τ ,∑
j

∑
(v′,τ ′)∈M ij

τ (v)

∑
δ∈Dj

∑
t∈T

qjt (v
′, δ, τ ′) f j (v′, δ) ≤ Pr

(
∃ (j, v′, τ ′) s.t. (v′, τ ′) ∈ M ij

τ (v)
)
. (9)

The left-hand side of inequality (9) is the probability an agent with a higher virtual value

v′ arrives at time τ ′ ≤ τ and receives the item; the right-hand side of the inequality is the

probability that such an agent exists, given a value v and an arrival time τ . For a given value

v and arrival time τ , we attach the multiplier ρi(v, τ) to the feasibility constraint (9); the sum

of these multipliers is Ri(v, τ) =
∑

τ ′≥τ

∑
v′<v ρ

i(v′, τ ′), which represents the aggregation of

these constraints for all later arrivals with lower values. We let γi
t(v, δ, τ) be the multiplier

on the constraint qit(v, δ, τ) ≥ 0.

We now consider the effect of temporal discrimination on revenue, considering the given

constraints. The coefficient on qiτ (v, δ, τ), denoted ciτ (v, δ, τ), in the linear programming

problem representing the seller’s revenue maximization is given by

ciτ (v, δ, τ) =
(
βτmi (v|δ)−Ri (v, τ)

)
f (v, δ)

+ γi
τ (v, δ, τ) +

∑
δ>δ′

v′>v

λi (v′, δ, δ′, τ) ε−
∑
δ′>δ
v′>v

λi (v′, δ′, δ, τ) ε. (10)

To prove the optimality of temporal nondiscrimination, it is sufficient to find feasible values

38As discussed in the main text, arrivals are common knowledge and thus there is no need to consider
misreports of arrival time τ .

39See Section 3.1 in the main text for a discussion of this intuition.
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for the dual variables such that for all types (v, δ, τ) the following condition is satisfied:

ciτ+t (v, δ, τ) = 0 ∀i, t, v, δ, τ, and qiτ (v, δ, τ) > 0 implies γi
τ (v, δ, τ) = 0. (LP)

We first show that feasible multipliers at time τ imply feasible multipliers for all subsequent

time periods τ + t > τ . The coefficients ciτ+t can be written as

ciτ+t (v, δ, τ) = δtciτ (v, δ, τ) + γi
τ+t (v, δ, τ)

−

[(
1− δt

)
Ri (v, τ) f i (v, δ) + δtγi

τ (v, δ, τ) +
∑
δ′>δ

λi (v, δ′, δ, τ)
(
δ′t − δt

)
v

]
. (11)

Recall that payments are received upon arrival and discounted according to β. This expres-

sion takes into account the manner in which the buyer discounts the prospect of receiving

the good later than her arrival time τ , and hence only adjusts the factors in ciτ using δ. The

dual variables Ri, λi, and γi
τ are all weakly positive. Therefore, ciτ (v, δ, τ) = 0 implies there

is always a nonnegative value for γi
τ+t(v, δ, τ) so that ciτ+t(v, δ, τ) = 0. Consequently, we only

need to consider the time-τ terms in (LP).

Under the optimal temporally-nondiscrimatory mechanism, a buyer who arrives in period

τ receives the good in period τ if she has the highest virtual value above the threshold v⋆i ,

implying that qiτ (v, δ, τ) > 0 when v > v⋆i (Board and Skrzypacz, 2016). We therefore

require that γi
τ (v, δ, τ) = 0 for v > v⋆i . Since in the optimal temporally-nondiscriminatory

mechanism the feasibility constraint will be binding for value-types with strictly positive

virtual value, we set Ri(v, τ) = βτmi
+(v). Note that since Ri(v, τ) =

∑
τ ′≥τ

∑
v′<v ρ

i(v′, τ ′),

this is equivalent to setting
∑

v′<v ρ
i(v′, τ) = (βτ − βτ+1)mi

+(v).

Requiring ciτ (v, δ, τ) = 0 is equivalent to requiring ciτ (1, δ, τ) = 0 and ciτ (v − ε, δ, τ) −
ciτ (v, δ, τ) = 0 for all v > 0. This relationship implies a system of equations in the λ

variables; defining µi(v, δ) ≡
(
mi(v|δ)−mi

+(v
)
)f(v, δ) with µi(0, δ) = 0, the system is

∑
δ′>δ

λi (v, δ′, δ, τ) ε−
∑
δ>δ′

λi (v, δ, δ′, τ) ε− γi
τ (v − ε, δ, τ) + γi

τ (v, δ, τ)

= βτ
(
µi (v − ε, δ)− µi (v, δ)

)
. (12)

At this point, since we will only be concerned with the existence of multipliers λi and γi, we

absorb the βτ factor in ciτ into λi and γi by diving through by βτ , and dropping it from the

expression above.

To apply Theorem 3, we represent this system as a network in which each type (v, δ, τ)

is associated with a node in N , each λi(v, δ, δ′, τ) is associated with a (nonnegative) flow
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from (v, δ, τ) to (v, δ′, τ), and each γi
τ (v−ε, δ, τ) is associated with a (nonnegative) flow from

(v, δ, τ) to (v− ε, δ, τ). Because we have assigned a value to the feasbility constraint, we are

concerned only with constraints which are relevant between a buyer’s types and not across

buyers, and we thus define a separate network for each buyer i and arrival time τ .40 First,

write

giτ (v, δ, v
′, δ′) =


λi (v, δ, δ′, τ) ε if v′ = v and δ ̸= δ′,

γi (v′, δ, τ) if v′ ∈ {v, v − ε} and δ = δ′,

0 otherwise.

Now, define capacities k(v, δ, v′, δ′) for the network arcs,

k (v, δ, v′, δ′) =


+∞ if v′ = v and δ > δ′,

+∞ if v′ ∈ {v, v − ε} , δ = δ′, and mi (v′) ≤ 0

0 otherwise.

Finally, define bi so that bi(v, δ) = µi(v−ε, δ)−µi(v, δ). We apply Theorem 3 to this network.

Let X ⊆ Θi be a set of types (v, δ) and let X̄ = Θi \ X be its complement. Given the

functions bi and k defined above, there are two cases in which inequality (8) is slack, because

the left-hand side is infinite:

• There are two types (v, δ) ≥ (v, δ′) such that (v, δ) ∈ X and (v, δ′) ∈ X̄;

• There are types (v, δ) ∈ X and (v′, δ) ∈ X̄ such that v′ < v < v⋆i (i.e., m
i(v) ≤ mi(v⋆i )).

Therefore, to consider satisfaction of (8) we need only consider sets X such that if (v, δ) ∈ X̄,

then (v′, δ′) ∈ X̄ for all v′ ∈ {v, . . . , v⋆i (v)} and δ′ ≥ δ. We refer to such X̄ as limited upper

sets. Theorem 3 implies that there is a solution for the multipliers λi and γi if and only if,

for any limited upper set X̄,

0 ≥
∑

(v,δ)∈X̄

bi (v, δ) =
∑

(v,δ)∈X̄

µi (v − ε, δ)− µi (v, δ) . (13)

Since inequality (13) must hold for all limited upper sets X̄, it must hold for limited upper

sets such that there is (v, δ) ∈ X̄ with (v′, δ′) ∈ X̄ if and only if v′ ∈ {v, . . . , v⋆i (v)} and

40Since arrival times are publicly observable, they do not explicitly enter into the buyer’s incentive con-
straints. Thus even though there are an infinite number of dual variables λi, the network associated with
arrival time τ is finite.
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δ′ ≥ δ. Thus a necessary condition for inequality (13) is∑
δ′≥δ

{
µi (v⋆ (v) , δ′)− µi (v − ε, δ)

}
≥ 0, (14)

for all v ∈ V and δ ∈ Di.

Now, consider an arbitrary upper set X̄ ⊆ Θi, and let X̄ = X̄− ∪ X̄+, where (v, δ) ∈
X̄− if mi(v) ≤ mi(v⋆i ) and (v, δ) ∈ X̄+ if mi(v) > mi(v⋆i ). Let D(X̃) = {δ ∈ Di : ∃v ∈
V s.t. (v, δ) ∈ X̃} be the set of discount types appearing in X̃, and for δ ∈ D(X̃) let

V (δ; X̃) = {v ∈ V : (δ, v) ∈ X̃} be the set of valuation types associated with discount

type δ in X̃. Define V (X̃) and D(v; X̃) similarly. Observing that for all δ ∈ D(X̄−),

v⋆i (minV (δ, X̄−)) = v⋆i , we write∑
(v,δ)∈X̄

{
µi (v, δ)− µi (v − ε, δ)

}
=

∑
(v,δ)∈X̄+

{
µi (v, δ)− µi (v − ε, δ)

}
+

∑
(v,δ)∈X̄−

{
µi (v, δ)− µi (v − ε, δ)

}
=

∑
v∈V (X̄+)

∑
δ∈D(v;X̄+)

{
µi (v, δ)− µi (v − ε, δ)

}
+

∑
δ∈D(X̄−)

∑
v∈V (δ;X̄−)

{
µi (v, δ)− µi (v − ε, δ)

}
=

∑
v∈V (X̄+)

∑
δ∈D(v;X̄+)

{
µi (v, δ)− µi (v − ε, δ)

}
+

∑
δ∈D(X̄−)

{
µi (v⋆i , δ)− µi

(
minV

(
δ; X̄−

)
− ε, δ

)}
.

Since X̄+ and X̄− are upper sets, D(X̄−) = {δ′ ∈ Di : δ′ ≥ δ} for some δ ∈ Di, and the same

is true of D(v; X̄+). Then satisfaction of inequality (14) implies that the above expression

is weakly positive, and hence inequality (14) is necessary and sufficient for condition (13).

Finally, condition (14) is independent of the number of available periods, and if it is

satisfied for any finite T , then temporal nondiscrimination is optimal for any length T ∈ N.
Since buyers are exponential discounters, the revenue obtainable by allocating to some type

at time t = ∞ is approximated by the revenue obtainable by allocating to this same type

at time t = T , for T large.41 It follows that when the latter is never optimal, neither is the

former.

41When all discount types strictly discount the future, δ < 1 for all δ ∈ Di, this result is immediate:
deferring allocation to t = ∞ reduces willingness to pay down to zero. Otherwise, when some discount type
is perfectly patient, δ = 1, their willingness to pay is identical across all time periods; if the seller can improve
revenue by infinitely deferring consumption of one type to a point where all other exponential discount types
have zero value of consumption, a strict revenue improvement is available when T is large enough that all
other exponential discount types have approximately zero value of consumption.
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Proof of Corollary 1. By definition,mi(v⋆i (v)) > 0. Then sincemi
+(v) = max{mi(v),mi(v⋆i )} ≥

mi(v), for any v ∈ V we have Let v ∈ V be such that mi(v) ≥ 0. We calculate

µi (v⋆i (v) , δ)− µi (v − ε, δ)

≥
(
mi (v⋆i (v)|δ)−mi (v⋆i (v))

)
f i (v⋆i (v) , δ)−

(
mi (v − ε|δ)−mi (v − ε)

)
f i (v − ε, δ)

=

(
1− F i (v⋆i (v))

f i (v⋆i (v))
− 1− F i (v⋆i (v)|δ)

f i (v⋆i (v)|δ)

)
f i (v⋆i (v) , δ)

−
(
1− F i (v − ε)

f i (v − ε)
− 1− F i (v − ε|δ)

f i (v − ε|δ)

)
f i (v − ε, δ)

=
(
1− F i (v⋆i (v))

) (
f i (δ|v⋆i (v))− f i (δ|v − ε)

)
+

∑
v−ε≤v′<v⋆i (v)

(
f i (δ|v′)− f i (δ|v − ε)

)
f i (v′) . (15)

Summing (15) over all δ′ > δ gives

(
1− F i (v⋆i (v))

) (
F i (δ|v − ε)− F i (δ|v⋆i (v))

)
+

∑
v−ε≤v′<v⋆i (v)

(
F i (δ|v − ε)− F i (δ|v′)

)
f i (v′) ≥ 0,

where the inequality follows from the corollary’s assumption that F i(δ|·) is nonincreasing.

B Calculations for Example 1

Let discount factors be δ ∈ {0, δ̂} and values be v ∈ {1/2, 1}. For π ∈ [0, 1], let the

distribution over types be

0 δ̂

1 1
3

1
2
π

1
2

1
6

1
2
(1− π) .

Note that the marginal probability of either discount rate is Pr(δ = 0) = Pr(δ = δ̂) = 1/2.
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Straightforward calculation gives

m (v|0) =

 1 if v = 1,

−1
2

if v = 1
2
;

m
(
v
∣∣∣δ̂) =

 1 if v = 1,

1
2

(
1−2π
1−π

)
if v = 1

2
.

m (v) =

 1 if v = 1,

1−3π
4−3π

if v = 1
2
.

In turn,

m (1|δ)−m+ (1) =

 0 if δ = 0,

0 if δ = δ̂;

m

(
1

2

∣∣∣∣δ)−m+

(
1

2

)
=

−1
2

if δ = 0,

1
2

(
1−2π
1−π

)
if δ = δ̂,

if π ≥ 1

3
;

m

(
1

2

∣∣∣∣δ)−m+

(
1

2

)
=

−6−9π
8−6π

if δ = 0,

2−3π
2(1−π)(4−3π)

if δ = δ̂,
if π <

1

3
.

Finally,

µ (1|δ) =

0 if δ = 0,

0 if δ = δ̂;

µ

(
1

2

∣∣∣∣δ) =

− 1
12

if δ = 0,

1
4
(1− 2π) if δ = δ̂,

if π ≥ 1

3
;

µ

(
1

2

∣∣∣∣δ) =

− 2−3π
16−12π

if δ = 0,

1
4

(
2−3π
4−3π

)
if δ = δ̂,

if π <
1

3
.

To apply Theorem 1, we check

µ (1|δ)− µ

(
1

2

∣∣∣∣δ) =

 1
12

if δ = 0,

−1
4
(1− 2π) if δ = δ̂,

if π ≥ 1

3
;

µ (1|δ)− µ

(
1

2

∣∣∣∣δ) =

−1
4

(
2−3π
4−3π

)
if δ = 0,

−1
4

(
2−3π
4−3π

)
if δ = δ̂,

if π <
1

3
.

Note that when π < 1/3, µ(1|δ̂)−µ(1/2|δ̂) < 0 and Theorem 1 does not apply. On the other
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hand, when π ≥ 1/3, µ(1|0)− µ(1/2|0) = 1/12 > 0, and

µ
(
1
∣∣∣δ̂)− µ

(
1

2

∣∣∣∣δ̂) = −1

4
(1− 2π) ≥ 0 ⇐⇒ π ≥ 1

2
.

Then Theorem 1 applies when π ≥ 1/2.

Remark 2. The conditional cdf of discount type given value, F (δ|v), is

0 δ̂

1 2
2+3π

1

1
2

1
4−3π

1 .

Then F (0|1) > F (0|1/2) whenever π < 2/3. Hence for π ∈ [1/2, 2/3) our Theorem 1 implies

that temporal nondiscrimination is optimal, but neither our own Corollary 1 nor Haghpanah

and Hartline (2019)’s Theorem 1 apply.

We now show that the condition in Theorem 2 relaxes the above result. Because δ ∈ {0, δ̂}
and m+(v) ≥ 0, the only relevant inequality is when δj = δ̂. When π ≥ 1/3 we check,

δ̂

(
µ
(
1
∣∣∣δ̂)− µ

(
1

2

∣∣∣∣δ̂)) 1
1
2

+
(
1− δ̂

)
(1)

(
1

2
π

)
≥ 0

⇐⇒ −1

2
δ̂ (1− 2π) +

1

2
π
(
1− δ̂

)
≥ 0 ⇐⇒ π ≥ δ̂

1 + δ̂
.

Then when δ̂ < 1
2
, Theorem 2 applies for all π ≥ 1/3, and immediate sale is optimal.

When π < 1/3 we check

δ̂

(
µ
(
1
∣∣∣δ̂)− µ

(
1

2

∣∣∣∣δ̂)) 1
1
2

+
(
1− δ̂

)
(1)

(
1

2
π

)
≥ 0

⇐⇒ − (2− 3π) δ̂ +
(
1− δ̂

)
(4− 3π) π ≥ 0

⇐⇒ −3
(
1− δ̂

)
π2 +

(
4− δ̂

)
π − 2δ̂ ≥ 0.

Then immediate sale will be optimal when

1

3
> π ≥ 4− δ̂ ±

√
16− 32δ̂ + 25δ̂2

6
(
1− δ̂

) .
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Figure 3: Temporal nondiscrimination is optimal in all shaded regions. In the rightmost
(orange) region, value and patience are positively correlated, and Corollary 1 applies. In the
middle (green and orange) region, the optimal monopoly price is independent of patience. In
the full region, optimality of nondiscrimination follows from Theorem 2. Perfect separation
of buyers into distinct time periods is weakly optimal when δ̂ = 1 (red line). In the remaining
unshaded region, patient bidders receive some allocation at time t = τ and some at time
t′ > τ .

Note that this has a solution if and only if

2
(
1− δ̂

)
≥ 4− δ̂ −

√
16− 32δ̂ + 25δ̂2 ⇐⇒ 2− 6δ̂ + 4δ̂2 ≥ 0 ⇐⇒ δ̂ <

1

2
.

By contrast, assume that δ̂ = 1 and π = 0, so that the relatively patient type is infinitely

patient and all buyers are either high-value and impatient, or low-value and patient. In

this case, it is straightforward to see that the optimal mechanism is to sell immediately to

any high-value buyer, or potentially to a low-value buyer in the next period if no high-value

buyer arrives.

B.1 Perfect separation

Our main results consider the optimality of temporal nondiscrimination. We now show,

in this example, that perfect temporal separation — where one discount type receives an

allocation in one period, and the other receives an allocation in another — is generically
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nonoptimal.42 Because we cannot apply our main results, we respecify the seller’s problem:

max
q,t

∑
v

t (v, δ) f (v, δ) ,

s.t. vδ · q (v, δ)− t (v, δ) ≥ 0 µ (IR)∑
δ

∑
v′≥v

∑
t

qt (v, δ) ≤ B (v) β (Feas.)

qt (v, δ) ≥ 0 γ (Feas.)

vδ · q (v′, δ′)− t (v′, δ′) ≤ vδ · q (v, δ)− t (v, δ) . λ (IC)

The right-hand variables are the multipliers on the constraints in the respective Lagrangian.

The first-order conditions of this problem are:

0 = f (v, δ)− µ (v, δ) +
∑

(v′,δ′ )̸=(v,δ)

λ (v, δ|v′, δ′)−
∑

(v′,δ′ )̸=(v,δ)

λ (v′, δ′|v, δ) ,

0 = vδtµ (v, δ)−
∑
v′≤v

β (v′) f (v′, δ) + γt (v, δ)

−
∑

(v′,δ′ )̸=(v,δ)

v′δ′tλ (v, δ|v′, δ′) +
∑

(v′,δ′ )̸=(v,δ)

vδtλ (v
′, δ′|v, δ) .

We say that the seller engages in perfect temporal separation if whenever a buyer with

one discount type receives an allocation in period t, no buyer with another discount type ever

receives an allocation in period t. Because in our example the impatient type δ̂ = (1, 0) does

not value consumption in period t = 1, if the seller engages in perfect temporal discrimination

they will sell to the impatient type only in period t = 0, and to the patient type only in

period t = 1.

Observe that, when π ≥ 1/2 and δ < 1, the optimal mechanism is to sell at a posted price

of p⋆0 = 1 at time t = 0, and to not sell in period t = 1. This is because the optimal mechanism

sells only to a buyer with value v = 1, even when discount types are common knowledge.

Delaying sale to a patient buyer sacrifices some available surplus, which is achievable through

immediate sale. Thus if there is perfect temporal separation, it must be that π < 1/2. In

this case, the optimal mechanism is to sell consumption in period t = 0 at price p⋆0 = 1 and

consumption in period t = 1 at price p⋆1 = 1/2. In this optimal mechanism, it follows that

42For similar claims regarding the suboptimality of degenerate mechanisms, see Pycia (2006) and Fang
and Norman (2006), among others.
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the following constraints are slack:

γ0 (1, (1, 0)) = 0, γ1 (·, (1, δ)) = 0, µ (1, (1, δ)) = 0,

λ

(
1, ·
∣∣∣∣12 , (1, 0)

)
= 0, λ (·, (1, δ)|·, (1, 0)) = 0, and λ (1, (1, 0)|·, (1, δ)) = 0.

Substitute these multipliers into the first-order conditions with respect to qt(1, (1, δ)),

1

2
πβ (1) +

1

2
(1− π) β

(
1

2

)
= γ0 (1, (1, δ))−

1

2
λ

(
1, (1, δ)

∣∣∣∣12 , (1, δ)
)
+ λ

(
1

2
, (1, δ)

∣∣∣∣1, (1, δ)) ,

1

2
πβ (1) +

1

2
(1− π) β

(
1

2

)
= γ1 (1, (1, δ))−

1

2
δλ

(
1, (1, δ)

∣∣∣∣12 , (1, δ)
)
+ δλ

(
1

2
, (1, δ)

∣∣∣∣1, (1, δ)) .

Note that these equations are jointly satisfied only if δ = 1 or all multipliers are 0. Since we

are looking to show that these equations are satisfied only if δ = 1, we assume for now that

all multipliers are 0, and in particular that β(1) = β(1/2) = 0.

Substituting β(1) = β(1/2) = 0 into the first-order condition with respect to q0(1, (1, 0))

gives

0 = µ (1, (1, 0)) + λ

(
1

2
, (1, 0)

∣∣∣∣1, (1, 0)) .

Thus µ(1, (1, 0)) = λ(1/2, (1, 0)|1, (1, 0)) = 0. And substituting these values in turn into the

first-order condition with respect to t(1, (1, 0)) gives 0 = 1/3, a contradiction. It follows that

perfect temporal separation is optimal only when δ = 1.

C Proofs for Section 4 (Generic misreports)

Lemma 1. Let δ > δ̃, and define w : R++ → R by

wt

(
δ, δ̃
)
=

δt − δ̃t

1− δt
.

Then wt

(
δ, δ̃
)
> ws

(
δ, δ̃
)
for all t < s.
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Proof. The first derivative of w takes the same sign as43

∂

∂t
wt

(
δ, δ̃
)

sign
=
(
1− δt

) (
δt ln δ − δ̃t ln δ̃

)
+
(
δt − δ̃t

)
δt ln δ

=
(
1− δ̃t

)
δt ln δ −

(
1− δt

)
δ̃t ln δ̃

sign
=

δt ln δ

1− δt︸ ︷︷ ︸
vt(δ)

− δ̃t ln δ̃

1− δ̃t
.

The sign of derivative of vt(δ) with respect to δ is

v′t(δ)
sign
= t ln δ + 1− δt.

Since v′t(1) = 0 and (∂/∂δ)(t ln δ + 1− δt) > 0, v′t(δ) < 0 and the result follows.

Proof of Theorem 2. We build on the preparatory work done in the proof of Theorem 1.

Again, we temporarily assume that the seller must allocate within the first T periods after

a given buyer arrives, and subsequently remove this assumption. Allowing for all possible

deviations to alternate discount rates, the coefficient ciτ (v, δ, τ) on the allocation qiτ (v, δ, τ)

in the linear programming problem is

ciτ (v, δ, τ) = βτµi(v, δ) + γi
τ (v, δ, τ) +

∑
δ′ ̸=δ
v′>v

(
λi (v′, δ, δ′, τ)− λi (v′, δ′, δ, τ)

)
ε. (16)

Using the necessary ciτ (v, δ, τ) = 0, we also have

ciτ+t (v, δ, τ) = −βτ (1− δt)mi
+(v)f

i(v, δ) + γi
τ+t(v, δ, τ)− δtγi

τ (v, δ, τ)

+
∑
δ′ ̸=δ

λi(v, δ′, δ, τ)(δt − δ′t)v (17)

As in the proof of Theorem 1, we have the requirement that for all types (v, δ, τ) the following

condition is satisfied:

ciτ+t (v, δ, τ) = 0 ∀i, t, v, δ, τ, and qiτ (v, δ, τ) > 0 implies γi
τ (v, δ, τ) = 0. (LP)

43We say a
sign
= b if a, b ̸= 0 implies ab > 0.
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For each i and τ , we seek nonnegative values for (λ, γt) that satisfy∑
δ′ ̸=δ
v′>v

(λ (v′, δ, δ′)− λ (v′, δ′, δ)) ε+ γτ (v, δ) = −µ(v, δ) (18)

∑
δ′ ̸=δ

λ(v, δ′, δ)(δt − δ′t)v + γτ+t(v, δ)− δtγτ (v, δ) = (1− δt)m+(v)f(v, δ) (19)

γτ (v, δ) = 0 v > v⋆i (20)

for all t ≥ τ , and (v, δ) ∈ Θi, where we have again absorbed βτ into all of the multipliers.

We also omit the i superscript and τ argument to simplify the presentation.

Using Farkas’ Lemma, there exists a nonnegative solution (λ, γt) to (18)– (20) if and only

if there are no x(v, δ), yt(v, δ) and z(v, δ) satisfying for all (v, δ) ∈ Θ∑
v′<v

(x(v′, δ)− x(v′, δ′)) ε ≥
∑
t>0

yt(v, δ
′)(δt − δ′t)v δ ̸= δ′ (21)

x(v, δ) ≥
∑
t>0

δtyt(v, δ) v ≤ v⋆ (22)

x(v, δ) + z(v, δ) ≥
∑
t>0

δtyt(v, δ) v > v⋆ (23)

yt(v, δ) ≥ 0 t > 0. (24)∑
(v,δ)∈Θ

x(v, δ)µ(v, δ) >
∑

(v,δ)∈Θ
t>0

yt(v, δ)(1− δt)m+(v)f(v, δ) (25)

We make several adjustments to simplify the problem. First, note that (23) can be ignored

as z(v, δ) is free. Next, define X(v, δ) ≡
∑

v′<v x(v
′, δ), ν(v, δ) ≡ m+(v)f(v, δ), wt(δi, δj) ≡

(δti − δtj)/(1− δti), ỹt(v, δ) ≡ (1− δt)yt(v, δ) and ∆vµ(v, δ) ≡ µ(v, δ)−µ(v− ε, δ). Finally, we

index the discount types in increasing order, δ1 < δ2 < · · · < δi < · · · < δD, with D being

the number of discount types. With these changes, the system becomes

X(v, δi)−X(v, δj) ≥
∑
t>0

ỹt(v, δj)wt(δi, δj)
v

ε
i ̸= j (26)

X(v + ε, δi)−X(v, δi) ≥
∑
t>0

δti
ỹt(v, δi)

1− δti
v ≤ v⋆ (27)

ỹt(v, δi) ≥ 0 t > 0. (28)∑
(v,δ)∈Θ
t>0

X(v, δi)∆vµ(v, δi) + ỹt(v, δi)ν(v, δi) < 0 (29)
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We want to find a condition that is equivalent to the system above having no solution.

Towards that end, we first choose ỹt to minimize the right-hand side of (29) subject to

the constraints implied by the other inequalities. The problem we are interested in is

min
ỹt

∑
(v,δ)∈Θ
t>0

ỹt(v, δi)ν(v, δi) s.t.
∑
t>0

ỹt(v, δi)wt(δi, δj)
v

ε
≥ X(v, δi)−X(v, δj) i > j (30)

Since ỹt(v, δi) ≥ 0 by (28), (26) impliesX(v, δi) ≥ X(v, δj) whenever i > j. Consequently, the

constraints in (30) place the relevant lower bounds on each ỹt(v, δi). Next, since ν(v, δi) ≥ 0

and wt(δi, δj) is decreasing in t when i > j (Lemma 1), in the solution to (30), ỹt(v, δi) = 0

for all i and t > 1.44 Consequently, it is without loss to eliminate all ỹt(v, δi) such that t > 1

from the problem. Henceforth, we drop the subscript on ỹ and w with the understanding

that t = 1.

Next, we show that only the “local” inequalities in (26) are relevant. Rewriting (26),

y(v, δi) ≥
X(v, δi)−X(v, δj)

δi − δj
≥ y(v, δj) i > j, (31)

but these inequalities are implied by the corresponding inequalities where j = i− 1. To see

this, note that for i > j

X(v, δi)−X(v, δj)

δi − δj
=

1

δi − δj

j+1∑
k=i

(δk − δk−1)
X(v, δk)−X(v, δk−1)

δk − δk−1

≤ 1

δi − δj

j+1∑
k=i

(δk − δk−1)y(v, δk)

where the right-hand side is a convex combination, and (31) implies that for all k < i

y(v, δi) ≥ y(v, δk).

44Suppose that ỹt(v, δi) > 0 for t > 1 and the constraint in (30) corresponding to (i, j) is binding. Then
we can simultaneously reduce ỹt(v, δi) to zero while increasing ỹ1(v, δi) by

ỹt(v, δi)
wt(δi, δj)

w1(δi, δj)
≤ ỹt(v, δi),

where the inequality follows from Lemma 1. If more than one constraint binds in (30), we can find the
constraint corresponding to

j ∈ argmax
k

wt(δi, δk)

w1(δi, δk)
,

and perform a similar adjustment to ỹt.
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From the previous two paragraphs and defining for i > 1

∆δX(v, δi) ≡
X(v, δi)−X(v, δi−1)

δi − δi−1

∆vX(v, δi) ≡
X(v + ε, δi)−X(v, δi)

ε

it follows that the solution to (30) is to set

y(v, δi) =

0 i = 1

∆δX(v, δi)
ε
v

i > 1.

We can now reduce the system (26)–(29) to

∆δX(v, δi) ≥ ∆δX(v, δi−1) i > 2 (32)

∆δX(v, δ2) ≥ 0 (33)

∆εX(v, δi) ≥ δi∆δX(v, δi)
1

v
v ≤ v⋆ (34)∑

(v,δi)∈Θ

∆vµ(v, δi)X(v, δi) +
∑

(v,δi)∈Θ
i>1

ε

v
∆δX(v, δi)(1− δi)ν(v, δi) < 0. (35)

Then using for i > 1

X(v, δi) = X(v, δ1) +
i∑

k=2

(δk − δk−1)∆δX(v, δk)

and
∑

i ∆vµ(v, δi) = 0, inequality (35) becomes

∑
(v,δi)∈Θ

i>1

∆δX(v, δi)

[
(δi − δi−1)

∑
k≥i

1

ε
∆vµ(v, δk) + (1− δi)

1

v
ν(v, δi)

]
< 0. (36)

Let

M(v, δi) ≡ (δi − δi−1)
∑
k≥i

1

ε
∆vµ(v, δk) + (1− δi)

1

v
ν(v, δi).
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Using this definition, rewrite the left-hand side of (36) once more as∑
(v,δi)∈Θ

i>1

∆δX(v, δi)M(v, δi)

=
∑

(v,δi)∈Θ
i>1

(
∆δX(v, δ2) +

∑
3≤k≤i

∆δX(v, δk)−∆δX(v, δk−1)

)
M(v, δi)

=
∑

(v,δi)∈Θ
i>1

(
M(v, δi)∆δX(v, δ2) +M(v, δi)

∑
3≤k≤i

∆δX(v, δk)−∆δX(v, δk−1)

)

=
∑
v

{
∆δX(v, δ2)

∑
j≥2

M(v, δj) +
∑
i>2

(∆δX(v, δi)−∆δX(v, δi−1))
∑
j≥i

M(v, δj)

}

By (32) and (33), ∆δX(v, δi) is positive and increasing in i for i ≥ 2. The sum above is

nonnegative for all such ∆δX(v, δi) if and only if∑
j≥i

M(v, δj) ≥ 0 ∀i ≥ 2.

D Proofs for Section 5 (Ambiguous temporal prefer-

ences)

Proof of Proposition 1. Note that the optimal temporally-nondiscriminatory mechanisms

feasible in this context, since the marginal distribution of valuation types is known. Then it

is sufficient to show that any other mechanism will yield strictly lower maxmin revenue. For

any fixed F ∈ F ,

inf
F ′∈F

EF ′

[
δτsp
(
ṽ, δ̃, τ̃

)]
≤ EF

[
δτsp
(
ṽ, δ̃, τ̃

)]
.

Then the seller’s revenue under any mechanism (q, p) is bounded above by what would be

obtained if the true distribution of values was F . When F satisfies Theorem 1 temporal

nondiscrimination is strictly optimal, in the sense that any mechanism which alters the

allocation strictly reduces the seller’s revenue.
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