
Economics 41: handout 4 Kyle Woodward

This is a draft; please send me corrections and/or suggestions.

Convergence of the sample mean

Suppose that 〈Xi〉Ni=1 are a sequence of i.i.d. random variables1 representing the outcomes from some
experiment repeated N times. We have discussed properties of the sample mean,

X =
1

N

N∑
i=1

Xi.

In particular, E[X] = E[X], and Var(X) = 1
N Var(X). A related result — the weak law of large numbers

(WLOLN) — says that as N grows large, P(|X −E[X]| > ε)→ 0 for all ε > 0. Taken together, these results
say that the more observations we make, the closer the sample mean should be to the true mean. We will
extend this logic slightly for an example.

Corollary: let XN and XN+1 be the sample means of 〈Xi〉Ni=1 and 〈Xi〉N+1
i=1 , respectively. Then as N → +∞,

Var(XN+1 −XN )→ 0.

Proof: this corollary says that not only are sample means coming arbitrarily close to the population mean,
they are also tending arbitrarily close to one another (or rather, arbitrarily close to the one following). This
is fairly intuitive: if things are converging to a particular point, then the distance between two consecutive
observations should be shrinking. A formal proof is a matter of applying what we know about independent
random variables.

Var(XN+1 −XN ) = Var

(
1

N + 1

N+1∑
i=1

Xi −
1

N

N∑
i=1

Xi

)

= Var

(
N

N(N + 1)

N∑
i=1

Xi −
N + 1

N(N + 1)

N∑
i=1

Xi +
1

N + 1
XN+1

)

= Var

(
1

N + 1
XN+1 −

1

N(N + 1)

N∑
i=1

Xi

)

= Var

(
1

N + 1
XN+1

)
+

N∑
i=1

Var

(
− 1

N(N + 1)
Xi

)

=

(
1

N + 1

)2

Var(XN+1) +

N∑
i=1

(
1

N(N + 1)

)2

Var(Xi)

=
Var(X)

(N + 1)2
+

NVar(X)

N2(N + 1)2

=

(
1

N(N + 1)

)
Var(X).

Since Var(X) is fixed, as N → +∞ the right-hand multiple will go to 0, so the variance of the difference will
go to 0.

�
1When the sequence 〈Xi〉Ni=1 is i.i.d., we generally drop the subscript and think of each being distributed identically to some

other random variable X. This allows us to avoid having to justify “which Xi we are talking about.”
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An interesting consequence here is that not only does the variance of the difference go to 0, but it does so
quickly, on order N2. That means that with 10 observations, the variance of the difference of sample means
will be only 1% of the variance of the underlying random variable! This is because not only is the variance
of an individual sample mean decreasing, but also because an extra observation will have so little effect on
the sample mean, since it is downweighted by 1

N+1 .

In section, I sampled the class to determine how long people sleep on a normal school night2. We collected
the following data:

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

Xi 7 7 4 6 5 6 8 7 5 5

XN 7 7 6 6 29
5

35
6

43
7

50
8

55
9 6

7 7 6 6 5.8 5.833 6.143 6.25 6.111 6

XN −XN−1 − 0 −1 0 −0.2 0.033 0.310 0.107 −0.139 −0.111

We can read what we want into this data — this speaks to the question of when, precisely, is N large? —
but we can see that with a low number of observations the difference in sample means is swinging wildly
about, while with a larger number the difference in sample means is coming closer and closer to 0.

If people send me the data points from the 1:00pm section, I will fill in a section on Chebyshev’s inequality
here.

Estimation potpourri

You have two [possibly-biased] coins. The first lands heads-up with probability p1, while the second lands
heads-up with probability p2. You run the following experiment: flip the first coin; if it lands heads-up, flip
the second coin. Let H1 and H2 be two random variables; H1 = 1 when the first coin lands heads-up and
H1 = 0 otherwise; H2 = 1 when the second coin lands heads-up and H2 = 0 otherwise (including if the
second coin is not flipped).

(a) What is the joint PMF of H1 and H2?

Solution: consider first the outcome space of the experiment: both coins may land heads-up, the first
coin may be heads-up while the second is tails-up, or the first coin may be tails-up (and the second is
not flipped).

The probability of the first outcome is the probability that the first coin lands heads-up (p1) multiplied
by the probability that the second coin lands heads-up (p2). The probability of the second outcome
is the probability that the first coin lands heads-up (p1) multiplied by the probability that the second
coin lands tails-up (1− p2). The probability of the third outcome is the probability that the first coin
lands tails-up (1− p1).

The PMF is then given by

fH1H2(1, 1) = p1p2,

fH1H2(1, 0) = p1(1− p2),

fH1H2(0, 0) = 1− p1.

(b) What are the marginal PMFs of H1 and H2?

2Several people cheated and tried to give ranges; tough cookies.
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Solution: the clearest method of computing the marginal distributions is by expressing the probabil-
ities as a table. We have

1 0 H2

1 p1p2 p1(1− p2) p1
0 0 1− p1 1− p1

H1 p1p2 1− p1p2
. The marginal of H1 is obtained by summing across the columns, while the marginal of H2 is obtained
by summing down the rows. We then have

fH1
(1) = p1, fH2

(1) = p1p2

fH1
(0) = 1− p1, fH2

(0)1− p1p2.

We also can compute these values directly from the definition of the marginal distributions. That is,

fH1
(1) =

∑
h2∈H2

fH1H2
(1, h2)

= fH1H2
(1, 0) + fH1H2

(1, 1)

= p1(1− p2) + p1p2

fH1
(1) = p1p2.

fH1
(0) =

∑
h2∈H2

fH1H2
(0, h2)

= fH1H2
(0, 0) + fH1H2

(0, 1)

fH1
(0) = 1− p1.

fH2(1) =
∑

h1∈H1

fH1H2(h1, 1)

= fH1H2(0, 1) + fH1H2(1, 1)

fH2(1) = p1p2.

fH2
(0) =

∑
h1∈H1

fH1H2
(h1, 0)

= fH1H2
(0, 0) + fH1H2

(1, 0)

= (1− p1) + p1(1− p2)

fH2
(0) = 1− p1p2.

(c) What is the correlation between H1 and H2, ρH1H2?

Solution: by definition,

ρH1H2
=

Cov(H1, H2)√
Var(H1)Var(H2)

.

We can shortcut the variance computations; since the marginal of each of H1, H2 is a Bernoulli distri-
bution (two possible outcomes), the formula for the variance of a Bernoulli random variable may be
applied. In this case,

Var(H1) = p1(1− p1), Var(H2) = p1p2(1− p1p2).

We know that covariance is

Cov(H1, H2) = E[H1H2]− E[H1]E[H2].
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Again, we can take the shortcut of using the formula for the expectation of a Bernoulli random variable,

E[H1] = p1, E[H2] = p1p2.

The leading expectation we must compute directly,

E[H1H2] =
∑

(h1,h2)

h1h2fH1H2
(h1, h2) = (0)(0)(1− p1) + (1)(0)p1(1− p2) + (1)(1)p1p2 = p1p2.

The correlation is then given by

ρH1H2
=

p1p2 − p1(p1p2)√
p1(1− p1)p1p2(1− p1p2)

=

√
p2 − p1p2
1− p1p2

.

(d) Let X represent the number of heads obtained in the experiment. What is the PMF of X?

Solution: from the definition of H1 and H2, we can see that X = H1 +H2. It follows that

fX(0) = P(X = 0) = P(H1 +H2 = 0) = P(H1 = 0, H2 = 0) = fH1H2
(0, 0) = 1− p1,

fX(1) = P(X = 1) = P(H1 +H2 = 1) = P(H1 = 1, H2 = 0) = fH1H2
(1, 0) = p1(1− p2),

fX(2) = P(X = 2) = P(H1 +H2 = 2) = P(H1 = 1, H2 = 1) = fH1H2
(1, 1) = p1p2.

Then the PMF of X is

fX(x) =


1− p1 if x = 0,

p1(1− p2) if x = 1,

p1p2 if x = 2.

(e) You compute Xi over 10 experiments; you find

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

2 0 0 1 0 1 2 1 0 1

What is the maximum-likelihood estimate for (p1, p2)?

Solution: to find the maximum-likelihood estimate for these two parameters, we must first determine
the probability of the observed experimental outcome. Since the experimental outcomes are presumed
to be independent, we have

P(〈Xi〉10i=1) =
10∏
i=1

P(Xi) =

10∏
i=1

fX(Xi).

Using the PMF we found in part (d), we can express this product as

P(〈Xi〉10i=1) = (1− p1)4(p1(1− p2))4(p1p2)2 = p61(1− p1)4p22(1− p2)4.

The maximum-likelihood estimate is the value of the parameters which maximizes the probability of
the observed outcome — we know this outcome has happened, so the true nature of the world should
intuitively reflect this; i.e., the known outcome of the world should be the most probable outcome,
prior to observation. Determining these values is as simple as taking the first derivative of the above
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probability and setting it equal to zero. We find

∂

∂p1
P(〈Xi〉10i=1) = p22(1− p2)4

[
6p51(1− p1)4 − 4p61(1− p1)3

]
; 6p51(1− p1)4 − 4p61(1− p1)3 = 0

; 6(1− p1)− 4p1 = 0

⇐⇒ p1 =
6

10
=

3

5
;

∂

∂p2
P(〈Xi〉10i=1) = p61(1− p1)4

[
2p2(1− p2)4 − 4p22(1− p2)3

]
; 2p2(1− p2)4 − 4p22(1− p2)3 = 0

; 2(1− p2)− 4p2 = 0

⇐⇒ p2 =
2

6
=

1

3
.

Then the maximium-likelihood estimate for these parameters is (p∗1, p
∗
2) = (3

5 ,
1
3 ).

That H1 and H2 represent Bernoulli trials is reflected in these outcomes: we have witnessed the first
coin heads-up 6 times out of 10, so the intuitive estimate for p1 is 6

10 = 3
5 ; of the 6 times the second

coin was flipped, we have witnessed it land heads-up 2 times, so the intuitive estimate for p2 is 2
6 = 1

3 .
This is a nice feature of the Bernoulli setup (and is useful for checking your answers) but does not
necessarily generalize to other distributions.

(f) Suppose p1 = 3
5 and p2 = 1

3 . Use facts about linear combinations of random variables (H1 and H2) to
compute E[X] and Var(X).

Solution: we know that X = H1 +H2. Since expectation is a linear operator, we have

E[X] = E[H1 +H2] = E[H1] + E[H2] = p1 + p1p2 = p1(1 + p2) =
4

5
.

Variance is slightly more involved, but equally formulaic.

Var(X) = Var(H1 +H2)

= Var(H1) + Var(H2) + 2Cov(H1, H2)

= p1(1− p1) + p1p2(1− p1p2) + 2(p1p2 − p21p2)

=
6

25
+

4

25
+ 2

(
1

5
− 3

25

)
=

14

25
.

(g) You run this experiment 7 times. Use Chebyshev’s inequality to place an upper bound on P(X ≤ 1
5 ).

Solution: we know E[X] = E[X] = 4
5 , and Var(X) = 1

7Var(X) = 2
25 (remember, there are 7 experi-

ments). Then we see

P

(
X ≤ 1

5

)
= P

(
X − 4

5
≤ −3

5

)
≤ P

(∣∣∣∣X − 4

5

∣∣∣∣ ≥ 3

5

)
.

It may help to graph on a number line why the ≤ turns into a ≥ when we apply the absolute value.
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To apply Chebyshev’s inequality, we need to find kσX = 3
5 . This is

kσX =
3

5

⇐⇒ k

√
2

25
=

3

5

⇐⇒ k =
3√
2
.

Chebyshev’s inequality tells us then that

P

(∣∣∣∣X − 4

5

∣∣∣∣ ≥ 3√
2

√
225

)
≤ 1(

3√
2

)2 =
2

9
.

Then an extremely weak upper bound on the desired probability is

P

(
X ≤ 1

5

)
≤ 2

9
.

Continuous random variables

Up until this point we have been dealing with discrete random variables; these are good for addressing
whether or not something happens, what kind of thing happens, how many times it happens, etc. This
concept will only capture so many features of the world. Consider, for example, the number of gallons of
water you use daily, as an Angeleno: it could be 100 gallons or it could be 110 gallons. It could also be
105.1 gallons 105.11 gallons, 105.111 gallons, etc. The crux is this: the amount of water you use could be
any among a continuous set of values; a discrete random variable cannot capture this3!

There is a slight hiccup, though. With discrete random variables, any outcome may happen with a strictly
positive probability (hence, probability mass). But with the infinite outcomes a continuous random variable
may take4, if each occurred with positive probability we would certainly have an overall probability greater
than 1; an [uncountably] infinite quantity of positive numbers must sum to infinity. So instead of speaking
of probability mass, we speak of probability density.

The analogy that I like to use is this: imagine a brick. This brick has a definite mass. If we take a small

portion of this brick, it also has mass. However, once we take an infinitesimally small portion of the brick,
it has no mass. That is, since it has no size, it contains nothing and therefore has no mass. However, it still
has a density! In fact, to determine the overall mass of the brick, we can integrate over the densities of each
infinitesimal slice. That is, since density is mass per unit volume, if we integrate over the entire volume we
will get the mass back.

3Although it could say you use between 108 and 109 gallons of water, between 109 and 110 gallons of water, etc.
4The math is slightly more nuanced than this, but this is good enough for government work.
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A continuous random variable functions in a similar way: each individual outcome (analogous to the in-
finitesimal slice of the brick) has zero probability mass, but it still has a probability density. When we
integrate over the probability density, we get back the probability mass that we are used to dealing with.
This motivates the fact that rather than probability mass functions (PMFs), we now deal with probability
density functions, or PDFs.

If the PDF of a random variable X is fX , we have the following:

P(a ≤ X ≤ b) =

∫ b

a

fX(x)dx.

PDFs have properties that more or less align with the properties we learned about PMFs:

• fX(x) ≥ 0;

•
∫
Support(X)

fX(x)dx = 1.

In particular, many of the things we did before with PMFs may be done with PDFs, substituting the
summation (

∑
) with integration (

∫
).

Question: the PDF of X is fX(x) = ax, and X has support [0, 1]. What is a?
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Solution: we know that
∫ 1

0
fX(x)dx = 1. So we have ∫ 1

0

fX(x)dx = 1

⇐⇒
∫ 1

0

axdx = 1

⇐⇒ 1

2
ax2
∣∣∣∣1
x=0

= 1

⇐⇒ a

2
= 1

⇐⇒ a = 2.

Question: the PDF of X is fX(x) = a(k + x)(k − x), (a > 0) and X has support [−B,B].

(a) What values can B take?

Solution: we know that fX(x) ≥ 0 for all x in the support of X. This means

a(k + x)(k − x) ≥ 0

⇐⇒ k2 − x2 ≥ 0

⇐⇒ k2 ≥ x2

⇐⇒ |x| ≤ |k|.

Since we know that X ∈ [−B,B], the only way to have |x| ≤ |k| for all x in the support of X is if
B ∈ (0, k].

(b) What is a as a function of B and k?

Solution: to find a, we appeal to the same method as in the previous question.∫ B

−B
fX(x)dx = 1

⇐⇒
∫ B

−B
a(k + x)(k − x)dx = 1

⇐⇒
∫ B

−B
k2 − x2dx =

1

a

⇐⇒
(
k2x− 1

3
x3
)∣∣∣∣B

x=−B
=

1

a

⇐⇒ 2B

(
k2 − 1

3
B2

)
=

1

a

⇐⇒ a =

[
2B

(
k2 − 1

3
B2

)]−1
.

Henceforth, assume B = k.

(c) What is a?

Solution: we substitute in,

a =

[
2B

(
k2 − 1

3
B2

)]−1
=

[
2k

(
2k2

3

)]−1
=

3

4k3
.
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(d) What is P(X ≤ k
2 )?

Solution: we can use the definition of the cumulative distribution function (CDF) to determine this
value. That is,

P (X ≤ t) = FX (t) =

∫ t

−k
fX(x)dx.

Then we have

FX(t) =

∫ t

−k

3

4k3
(k2 − x2)dx

=
3

4k3

(
k2x− 1

3
x3
)∣∣∣∣t

x=−k

=
3

4k3

(
k2t− 1

3
t3
)

+
3

4k3

(
2k3

3

)
=

3k2t− t3

4k3
+

1

2
.

It follows that

P

(
X ≤ k

2

)
= FX

(
k

2

)
=

12k3 − k3

32k3
+

1

2
=

27

32
.

(e) What is P(−k
2 ≤ X ≤

k
2 )?

Solution: for a continuous random variable, the definition of this probability is

P

(
−k

2
≤ X ≤ k

2

)
=

∫ k
2

− k
2

fX(x)dx.

Appealing to calculus, we can rewrite this as∫ k
2

− k
2

fX(x)dx =

∫ k
2

−k
fX(x)dx−

∫ − k
2

−k
fX(x)dx = FX

(
k

2

)
− FX

(
−k

2

)
.

This general property is quite useful; we can also see it in the following way: let E1 = {X ≤ −k
2},

E2 = {X ≤ k
2}, and E3 = {−k

2 ≤ X ≤ k
2}. Then we have E1 ∩ E3 = ∅, but E1 ∪ E3 = E2. Since the

probability of the union of mutually-exclusive events is the sum of their individual probabilities, we
then have

P(E1) + P(E3) = P(E2) =⇒ P(E3) = P(E2)− P(E1) = FX

(
k

2

)
− FX

(
−k

2

)
.

As we have already computed FX(k
2 ), we only need FX(−k

2 ). This is

FX

(
−k

2

)
= −12k3 − k3

32k3
+

1

2
=

5

32
.

It follows that

P

(
−k

2
≤ X ≤ k

2

)
=

27

32
− 5

32
=

11

16
.

February 4, 2012 9


