
Economics 201a: week 6 Kyle Woodward

Production

As we move away from solving simple consumer problems, we enter the somewhat-more-realistic world of
general equilibrium. While introducing a price mechanism to facilitate trade between individuals is useful on
some fundamental level, in describing how an economy works it is necessary to add the ability to introduce
new products and goods to the system. Enter the firm; in theory, an economic firm represents (more or
less) a technology for transforming goods of one type to goods of another. Its ability to produce is given
by the production set, denote Y . In class, we have discussed various features of the production set; below,
we will attack the particular assumption of free disposal, as well as solve two examples of profit-maximizing
behavior.

Free disposal

In lecture, there was some discussion regarding the utility behind the free disposal assumption1. It seems
that the best answer to the question is twofold: (i) firms can actually engage in free (or nearly-free) disposal,
at least to the extent that it matters; and (ii) introducing free disposal does not affect profit-maximizing
behavior on the part of a price-taking firm. We will discuss each of these points below, in reverse order.

Theorem

Let Y ⊂ RL be a production set, and let Y ′ ≡ Y − RL+ be “Y with free
disposal.” Then if p� 0 and y′ ∈ argmaxz∈Y ′ p · z, y′ ∈ argmaxz∈Y p · z.

Proof. note that any z ∈ Y ′ is such that z = yz − rz for some yz ∈ Y and rz ∈ RL+. If y′ solves the firm’s
problem, then we know that p · y′ ≥ p · z for all z ∈ Y ′; in particular, p · (yy′ − ry′) ≥ p · z. Suppose that
ry′ 6= 0. Then p · yy′ > p · y′, and yy′ = yy′ − 0 ∈ Y ′. Hence yy′ is feasible in Y ′ and provides strictly greater
profits than y′, a contradiction of optimality. Thus if y′ is a maximizer, it must be that ry′ = 0, which
implies y′ ∈ Y .

Now suppose that y′ /∈ argmaxz∈Y p · z; then there is some y′′ ∈ Y such that p · y′′ > p · y′. But since
y′′ = y′′ − 0 ∈ Y ′, this contradicts the optimality of y′ in Y ′. Hence y′ also solves the initial profit-
maximization problem in the production set Y . �

The purpose of this theorem is to demonstrate just how innocuous the free disposal assumption is in the
case of price-taking equilibrium. In particular, if we introduce free disposal to a particular firm’s problem,
the solution to the problem does not change. Notice, however, that this requires that the firm cannot price
strategically.

Ponies and rainbows

As an example of why free disposal might matter with strategic pricing, consider a firm which can produce
ponies from rainbows, with a production set given by

Y = {(0, 0), (−1, 2)} .

That is, the firm can either shut down, or can produce two ponies from one rainbow. There is a single
consumer with quasilinear demand for ponies and cold, hard cash, given by

u(h,m) = 1[h ≥ 1]k +m, k > 1.

1In section, we discussed the reality of the assumption using a famous (in certain circles) story about Atari, the videogame
ET, and New Mexico. I highly suggest Googling this little bit of history.
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Then if the firm shuts down, the price of a pony must be greater than k; assuming that the price of a rainbow
is less than k, the firm would rather produce (−1, 2). However, if the firm produces 2 ponies, a strict market
clearing equality (demand precisely equals supply) implies a price of 0! So long as the price of a rainbow is
positive, the firm would rather shut down.

Now suppose that the firm can put a single pony out to pasture; that is, the firm has free disposal of ponies.
A strategic firm can see that the market-clearing price of ponies, ph is such that

ph ≈


> k if h < 1,

∈ [0, k] if h = 1,

= 0 otherwise.

.

Thus if the firm sells a single pony, it may charge up to ph = k and clear the market. Given that the price of
a rainbow is less than k, this will obtain the firm positive profits, strictly better than the profits available if
free disposal is not an option. In fact, notice that without free disposal this strategic firm’s problem has no
solution! It stands to reason that in the case of a monopoly (or otherwise strategic firm) free disposal may
not be innocuous at all, and may be necessary to find any solution at all to the firm’s problem.

Example: neither ponies nor rainbows2

For a somewhat less ridiculous example, we will consider a more staid firm which produces y2 from y1. Its
production set is given by

Y =
{

(y1, y2) : y1 ≤ −1, y2 ≤
√
k − y1 −

√
k + 1

}
, k ≥ −1.

Find profit-maximizing production, given prices p.

Solution: we see that the maximization problem maxy∈Y p · y may be stated as

max
y

p · y, s.t. y1 ≤ −1 and y2 ≤
√
k − y1 −

√
k + 1.

This has a Lagrangian of

L(y) = p1y1 + p2y1 + λ
(√

k − y1 −
√
k + 1− y2

)
− µ(1 + y1).

First-order conditions give us

∂

∂y1
= p1 −

λ

2

√
k − y1

−1
− µ,

∂

∂y2
= p2 − λ.

By a rough analogue of Walras’ law, the production constraint must always bind; that is, since prices are
strictly positive greater production of y2 is always better for the firm, hence the ultimate production of y2
must meet capacity. From the first-order conditions, we have that p2 = λ; hence we see

p1 −
p2
2

√
k − y1

−1
− µ = 0

⇐⇒
√
k − y1 =

p2
2(p1 − µ)

⇐⇒ y1 = k −
(

p2
2(p1 − µ)

)2

,

=⇒ y2 =
p2

2(p1 − µ)
−
√
k + 1.

2Formally, we issue no specification as to what y1 and y2 are; while they may very well be ponies and rainbows (respectively),
this is decidedly unlikely.
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Figure 1: example production sets for k ∈ {−1, 0}.

Intuitively, we can see that y1 decreases and y2 increases as p2 increases; since production inputs are negative,
this is the correct relationship. The converse holds for the relationship with p1.

Considering the Lagrange multiplier µ, we see that if the factor constraint on y1 does not bind,

y1 = k −
(
p2
2p1

)2

;

this is consistent when

−1 ≥ k −
(
p2
2p1

)2

⇐⇒ k + 1 ≤
(
p2
2p1

)2

⇐⇒ 2
√
k + 1 ≤ p2

p1
.

This leaves us the following expression for the (unique) profit-maximizing production plan,

y(p) =


(
k −

(
p2
2p1

)2
, p22p1

−
√
k + 1

)
if 2
√
k + 1 ≤ p2

p1
,

(−1, 0) otherwise.

Notice that when k = −1, production is always interior (in the sense that y1 < −1) for any p � 0. This is
because — in this case — there is infinite marginal production when x = −1; that is, some analogue of the
Inada conditions holds. When k > −1, there is a set of price ratios which yield production at the kink in
the production set. The existence of such corner solutions can be clearly seen in Figure 2.
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Figure 2: optimal production plans for various prices, and k ∈ {−1, 0}. Note the corner solutions arising
when k 6= −1.

Example: shutdown

Suppose we have the same setup as above, except that shutdown — y = (0, 0) — is now feasible. What is
the firm’s optimal production plan?

Solution: from above, we have an expression for the firm’s optimal behavior given that production lies on
the “main body” of the production set. What shutdown permits is the potential to make zero profits; you
can see in Figure 2 that profits are sometimes negative in the problem without shutdown. Solving the firm’s
problem with shutdown is then a matter of checking whether or not profits are positive. That is, if profits
from the above problem are positive, the firm is strictly better off than shutting down; if negative, then
shutdown is strictly preferred, and will now be pursued.

To begin, notice that profits from the corner solution y = (−1, 0) are strictly negative, r = −p1. Then if we
are in a case in which corner production previously would have been followed, the firm will now shut down.
This simplifies our analysis, since we now only care about interior behavior.

Profits from the interior solution are given by

p1

(
k −

(
p2
2p1

)2
)

+ p2

(
p2
2p1
−
√
k + 1

)
= p1k −

p22
4p1

+
p22
2p1
− p2
√
k + 1

= p1k +
p22
4p1
− p2
√
k + 1.

Then profits are positive when

p1k +
p22
4p1
− p2
√
k + 1 > 0

⇐⇒
(
p1
p2

)
k +

1

4

(
p2
p1

)
−
√
k + 1 > 0

⇐⇒ ρk +
1

4
ρ−1 −

√
k + 1 > 0

⇐⇒ ρ2k − ρ
√
k + 1 +

1

4
> 0.
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Here, ρ = p1
p2

is the price ratio. When k = 0, the solution is3

ρ <
(

4
√
k + 1

)−1
=

1

4
.

That is, p1 must be significantly small relative to p2. In all other cases — k 6= 0 — the above is a quadratic
equation; we find zeros of

ρ =

√
k + 1±

√
k + 1− k

2k
=
±1 +

√
k + 1

2k
.

Two cases arise:

(a) k < 0; then the parabola is downward-facing, and we want ρ on the interior. This gives us

ρ ∈
(

1 +
√
k + 1

2k
,
−1 +

√
k + 1

2k

)
(remember, k < 0).

Since the price ratio must always be positive, this implies

ρ ≤ −1 +
√
k + 1

2k
.

(b) k > 0; then the parabola is upward-facing, and we want ρ on the exterior. Then we want

ρ <
−1 +

√
k + 1

2k
or ρ >

1 +
√
k + 1

2k
.

Notice that the right-hand solution is counterintuitive: the price of y1 must be significantly large
relative to the price of y2. We then check this against the condition for an interior solution,

2
√
k + 1 ≤ p2

p1
⇐⇒ ρ ≤

(
2
√
k + 1

)−1
.

Putting the right-hand side of both inequalities together, we find(
2
√
k + 1

)−1
>

1 +
√
k + 1

2k

⇐⇒ k >
√
k + 1 + k + 1

⇐⇒ 0 > 1 +
√
k + 1.

Since this is a contradiction, the right-hand side is a contradiction of an interior solution. Thus for
positive profits we must have

ρ <
−1 +

√
k + 1

2k
.

We may now piece all of these together. Since the firm will not produce when profits are not positive, we
obtain a production function of

y(p) =



(
k −

(
p2
2p1

)2
, p22p1

−
√
k + 1

)
if k = 0 and p1

p2
< 1

4 ,(
k −

(
p2
2p1

)2
, p22p1

−
√
k + 1

)
if k 6= 0 and p1

p2
< −1+

√
k+1

2k ,

(0, 0) otherwise.

3This can be seen in Figure 2, in that each of the price lines passes below the origin.
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Assets and insurance

In lecture, we briefly discussed a stripped-down version of asset pricing4. In this simplified model, there
are two dates, t ∈ {1, 2}, referred to as the initial and terminal dates, respectively5. At the initial date
the endowment is known, but at the terminal date there is some set S of states which arise with some
probability; of course, if we had more than two dates, we would likely want to see randomness at all dates
but the initial date, but in the two-date case this is uniquely the terminal date. S may be arbitrarily large
— even uncountable, as in a continuous distribution — but for simplicity, we generally assume that S has
two states, S = {1, 2}; convention gives that Pr(s = 1) = π, where s is the realization of the state of the
world.

Notation for the consumer is that e0 is the endowment at the initial date, and e1 and e2 are the endowments at
the terminal date in states 1 and 2, respectively. Corresponding to these subscripts we also have consumption
c0, c1, c2, defined similarly. The problem in an asset pricing problem is generally that of a consumer
attempting to mitigate risk to some extent, according to budget w = p0e0 + p1e1 + p2e2. Utility is generally
the (discounted) sum of expected utility over the dates in the model.

There are a few special cases of this setup to which we regularly refer:

• Exchange-only. Multiple agents work to consumption smooth by trading amongst themselves at market
prices determined in the standard Walrasian way.

• Asset pricing. There is a risk-free asset which pays off at rate R and a risky asset which pays of ` in
state 1 and h in state 2; we solve the consumer’s problem at a given price vector. Alternatively, we
price the risky asset so that there is no arbitrage.

• Insurance. There are multiple assets representing consumption in particular terminal states; we solve
the consumer’s problem at a given price vector, and the consumer has the option to sell future con-
sumption back to the insurer in the form of buying a negative quantity of insurance.

Depending on your view of economics, one or the other of these is more interesting. We will see plenty
of other Walrasian equilibrium computations, so I’ll tend to avoid those models in asset pricing (unless
requested); Bill has taught asset pricing in the past, and I would not be surprised if he focuses on the second
point. For my part, I find proper insurance the most intuitive discussion of the concept. Fortunately, the
methods are all very similar, so we are well enough off solving one type of problem at the expense of the
others.

Actuarial fairness

Actuarial fairness is an assumption on price ratios which is particularly relevant in setups with insurance
firms. An asset price vector is actuarially fair if any asset portfolio yields zero expected profits for the
insurer. In particular, if one unit of a simple asset k pays off yk in state k, actuarial fairness in a world
without discounting implies

pk − πkyk = 0,

where πk is the probability of state k arising. As a rule, we will generally assume that yk = 1 — the asset pays
off 1 in state k — so that comparisons between asset prices are intuitive and meaningful; this assumption
gives rise to a very clean expression for the most useful form of actuarial fairness,

pk = πk.

4As Bill calls it, “baby asset pricing.”
5Depending on your opinion of 1-indexing, we could also say t ∈ {0, 1}. Generally speaking, in this model there is no confusion

since we have a very small number of dates and states, but in a larger model this should probably be made reader-friendly.
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That is, prices are equal to probabilities. Somewhat more generally, we need that prices are proportional to
probabilities, or that price ratios equal probability ratios. This allows us to scale prices arbitrarily, ensuring
the proper homogeneity of degree zero of Walrasian demand.

Of course, more complicated assets will be more difficult to price, at least in terms of the equations specifying
their prices. Further, the introduction of a discount rate for the insurer — representing, say, a prevailing
market interest rate — will have downstream implications for the precise nature of actuarial fairness6.

Why do we assume actuarial fairness in insurance markets? One simple yet indirect answer is that it makes
algebra simpler. More realistically, though, according to Walrasian firm theory, we expect firms to profit-
maximize given prices; if the insurance market is constant returns to scale — which we get from the fact
that the insurer is risk-neutral — then insurance may be scaled up indefinitely7. If positive profits arise from
any contract, the insurer will be sure to supply an infinite amount; if negative profits arise, the ability of the
insurer to buy contracts will have the insurer purchasing an infinite amount. The only set of prices which
will ensure the ability of markets to clear will have zero expected profits, or actuarially fair prices.

Below, we discuss two examples of how an insurer might make profits with prices being roughly actuarially
fair. In the first case, we are not violating the argument that supply will go to infinity, since a deductible
matters only on the extensive margin, and does not represent profits per-unit beyond the first contract. The
second example retains the spirit of actuarially fair pricing while blatantly violating our argument about
bounded supply and demand above; however, since we are not solving for general equilibrium in this case
but for consumer demand for the assets, we will paper over this inconsistency.

Example: deductible

Suppose there are two dates and states. At the initial date, the agent has endowment e; at the terminal
date, the agent endowment 0 with probability π (state 1) and again has endowment e with probability
(1− π) (state 2). An insurance company offers forward contracts for consumption in one state or the other
at actuarially fair prices; the agent is free to buy or sell these contracts. The agent’s intertemporal utility is
in expectation and is not discounted, i.e.,

u(c0, c1, c2) = ln(c0 + k) + π ln(c1 + k) + (1− π) ln(c2 + k), k > 0.

To the agent’s disapproval, the insurer does not pay out the full value of the contract in the event that it
is to pay the agent (when the agent has purchased a forward contract for this state); prior to payment, it
retains a deductible b, or the entirety of the contract if less than b. There is no symmetry to this offer, and
in the event that the agent is to make a payment to the insurer the entire contract is paid. When does the
insurer make positive profits?8

Solution: we attack this question in three stages. For notation, let x1 and x2 represent the net amount of
insurance purchased in states 1 and 2, respectively.

(i) If x1 > 0, then x1 > b.

Notice that c2 = w+x2, and c0 = w−p1x1−p2x2. Suppose x1 ∈ (0, b]; then c1 = x1−min{x1, b} = 0.
We can see that

ln(w − p1x1 − p2x2 + k) + π ln k + (1− π) ln(w + x2) < ln(w − p2x2 + k) + π ln k + (1− π) ln(w + x2).

6It is not complicated to perform this exercise: ask what expected profits are in a world with a discount rate, then solve for
zero profits.

7This may ignore troubles such as overhead from employing underwriters, but if we ignore this detail and assume that the
insurer is perfectly able to pay or collect on contracts with no frictions, the scalability is clear.

8Notice that this differs from the setup given in section. In section, we papered over point (i) below. However, to be more
rigorous we will need to formally establish why x1 > 0 implies x1 > b; to do so will require that utility be well-defined at all
points. When k = 0 — as in section — the argument that some other amount of investment is better is not strictly true, albeit
quite intuitive.
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Thus if x1 ∈ (0, b), an investment of x1 = 0 is strictly preferred. Notice that we have said nothing yet
about the signs of x1 and x2, only that if x1 is strictly positive it must strictly cover the deductible.

(ii) The insurer makes a profit only if x1 > 0 or x2 > 0.

To assist computation, define “per-state” profits9 by

rj =

{
(pj − πj)xj if xi ≤ 0,

(pj − πj)xj + πj min{xj , b} otherwise.

Since prices are actuarially fair, we know pj = πj in each state j. Hence profits may be spelled out as

rj =

{
0 if xi ≤ 0,

πj min{xj , b} otherwise.

In light of point (i) above, the latter case effectively becomes πjb, but this is not how it enters the
firm’s problem. Thus in our specification, we see that the firm will turn a profit of πj min{xj , b} in any
state j in which xj > 0, and hence the firm will obtain positive profits only if one of x1 > 0 or x2 > 0
holds.

(iii) When is it the case that x1 > 0?

This is a matter of solving a standard first-order conditions problem. The consumer’s problem is given
by

max
c,x

ln(c0 + k) + π ln(c1 + k) + (1− π) ln(c2 + k),

s.t. c0 = w − p1x1 − p2x2,
c1 = x1 − 1[x1 > 0]b,

c2 = w + x2 − 1[x2 > 0]b.

The condition on c1 is derived from part (i) above; the condition on c2 follows analogously. Thus the
Lagrangian is given by

L(x) = ln(w − p1x1 − p2x2 + k) + π ln(x1 − 1[x1 > 0]b+ k) + (1− π) ln(w + x2 − 1[x2 > 0]b+ k).

First-order conditions yield

∂

∂x1
= − p1

w − p1x1 − p2x2 + k
+

π

x1 − 1[x1 > 0]b+ k
,

∂

∂x2
= − p2

w − p1x1 − p2x2 + k
+

1− π
w + x2 − 1[x2 > 0]b+ k

.

Actuarial fairness implies the following equalities,

w − p1x1 − p2x2 + k = x1 − 1[x1 > 0]b+ k

w − p1x1 − p2x2 + k = w + x2 − 1[x2 > 0]b+ k

; x1 − 1[x1 > 0]b = w + x2 − 1[x2 > 0]b.

We can see that this implies a few cases (importantly, though, we cannot have x1 < 0 while x2 > 0);
we will check each of these individually.

9Generally speaking, profits are denoted by π. In the setup we’ve been using, π is a probability measure. Another standard
probability notation is p, which would of course be confused with prices; thus we will have to deal with this little discrepancy
by using a nonstandard notation for profits, r.
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(a) x1 > 0, x2 < 0. This is the case in which insurance is bought against state 1, while insurance
is sold from state 2. Given intuition about consumption smoothing, this appears to be the most
likely case. With x1 > 0, x2 < 0 we find that x1 = w+ x2 + b, or x2 = x1− b−w. Hence we may
substitue in to find

w − p1x1 − p2x2 + k = x1 − b+ k

=⇒ w − πx1 − (1− π)(x1 − b− w) = x1 − b
=⇒ w + b+ (1− π)b+ (1− π)w = 2x1

=⇒ x1 =
(2− π)(w + b)

2
.

Since x1 > 0 implies x1 > b, we now check

x1 > b

⇐⇒ (2− π)(w + b) > 2b

⇐⇒ w + (1− π)w > πb

⇐⇒ w + p2w > p1b.

That is, coverage is purchased when the total available wealth across dates (discounted according
to expectation/prices) is at least sufficient to purchase coverage which extends past the (expected)
deductible b. We should also check that x2 is negative,

x2 = x1 − b− w =
−π(w + b)

2
< 0,

so our solution is consistent.

(b) x1 > 0, x2 > 0. We then have that x1 = x2 + w, or x2 = x1 − w. Hence we may substitute in to
find

w − p1x1 − p2x2 + k = x1 − b+ k

=⇒ w − πx1 − (1− π)(x1 − w) = x1 − b
=⇒ w + b+ (1− π)w = 2x1

=⇒ x1 =
(2− π)w + b

2
,

=⇒ x2 =
−πw + b

2
.

Since x2 > 0 implies x2 > b, we now check

x2 > b

⇐⇒ −πw + b

2
> b

⇐⇒ −πw > b,

which is a clear contradiction; hence we cannot have x1 > 0, x2 > 0.

(c) x1 < 0, x2 < 0. We then have again that x1 = x2 + w, or x2 = x1 − w. Hence we may substitute
in to find

w − p1x1 − p2x2 + k = x1 + k

=⇒ w − πx1 − (1− π)(x1 − w) = x1

=⇒ x1 =
(2− π)w

2
> 0.

We do not need to solve for x2, since this is already a contradiction. Hence we cannot have
x1 < 0, x2 < 0.
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We thus have a unique possible set of insurance trades, x1 > 0 and x2 < 0. Our last step is to check
that trade is strictly preferred to no trade,

ln

(
w − π

(
(2− π)(w + b)

2

)
+ (1− π)

(
π(w + b)

2

)
+ k

)
+ π ln

(
(2− π)(w + b)

2
− b+ k

)
+ (1− π) ln

(
w − π

(
w + b

2

)
+ k

)
= ln

(
2w + 2k + (π2 − 2π)(w + b) + (π − π2)(w + b)

)
+ π ln ((2− π)(w + b)− 2b+ 2k)

+ (1− π) ln (2w + 2k − π(w + b))− 2 ln 2

= ln((2− π)w − πb+ 2k) + π ln((2− π)w − πb+ 2k) + (1− π) ln((2− π)w − πb+ 2k)− 2 ln 2

= 2 ln

(
2w − π(w + b)

2
+ k

)
> ln(w + k) + π ln k + (1− π) ln(w + k)

= ln
(
(w + k)2−πkπ

)
This yields a rather obtuse condition,

b <
(2− π)w + 2k − 2

√
(w + k)2−πkπ

π
.

When this condition on the deductible holds — as well as that derived in (a) — we will have positive
purchase of insurance against state 1, and the insurer’s profits will then be positive. Notice that, as

k → 0, the right-hand side goes to (2−π)w
π , which is exactly the condition obtained in (a) and in section

(where we assumed k = 0, ignoring algebraic issues).

Example: “constant cut”

Another way an insurer might make positive profits is by scaling state prices by some constant factor c;
that is, while forward-state price ratios remain actuarially fair, the intertemporal margins are distorted by c.
Using the same setup from above, except that the deductible policy is replaced with this constant multiple
policy, when does the insurer make positive profits?

Solution: we are in a slightly nicer world here, since the implicit continuity of the problem should keep us
from case-analysis. The insurer’s expected profits are given by

(βp1 − π)x1 + (βp2 − (1− π))x2 = (β − 1)p1x1 + (β − 1)p2x2 + (p1 − π)x1 + (p2 − (1− π))x2

= (β − 1)(πx1 + (1− π)x2) (by actuarial fairness of unscaled prices).

Thus whether or not the firm makes a profit will depend on the signs and magnitudes of x1, x2, as well as on
the magnitude of c. To put some more certainty around this, we will need to solve the consumer’s problem.

The consumer’s problem is given by

max
c,x

ln(c0 + k) + π ln(c1 + k) + (1− π) ln(c2 + k),

s.t. c0 = w − βp1x1 − βp2x2,
c1 = x1,

c2 = w + x2.

The Lagrangian is therefore

L(x) = ln(w − βp1x1 − βp2x2 + k) + π ln(x1 + k) + (1− π) ln(w + x2 + k).
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First-order conditions yield

∂

∂x1
[L(x)] = − βp1

w − βp1x1 − βp2x2 + k
+

π

x1 + k
,

∂

∂x2
[L(x)] = − βp2

w − βp1x1 − βp2x2 + k
+

1− π
w + x2 + k

.

Appealing to actuarial fairness, we know that p1 = π and p2 = (1− π), hence we can find

x1 + k = w + x2 + k =⇒ x1 = x2 + w.

Substituting in as we usually do,

w − βp1x1 − βp2x2 + k = βx1 + βk

=⇒ w + (1− β)k − β(1− π)(x1 − w) = β(1 + π)x1

=⇒ (1 + β(1− π))w + (1− β)k = 2βx1

=⇒ x1 =
(1 + β(1− π))w + (1− β)k

2β
,

=⇒ x2 =
(1− β(1 + π))w + (1− β)k

2β
.

With these values in hand, we find

πx1 + (1− π)x2 =
(1− βπ)w + (1− β)k

2β
+

1

2β
(πβ − (1− π)β)w

=
(1 + β(π − 1))w + (1− β)k

2β
.

To sign insurer’s profits, we check

πx1 + (1− π)x2 > 0

⇐⇒ (1 + β(π − 1))w + (1− β)k > 0

⇐⇒ β((π − 1)w − k) > −(w + k)

⇐⇒ β <
w + k

(1− π)w + k
.

Then we see that the insurer makes strictly positive profits so long as

β ∈
(

1,
w + k

(1− π)w + k

)
.

Example: aggregate risk

Recall Bill’s proof from lecture that identical aggregate endowments imply actuarially fair price ratios. Per
request, we give a concrete example here of differing aggregate endowments leading to actuarially unfair
prices.

Suppose we have two consumers, i ∈ {1, 2}, each with endowment given by (ei0, e
i
1, e

i
2), where subscripts

correspond to a two-date/state world in the usual way. The probability of state 1 at date 2 is π. Bernoulli
utility for each agent is given by u(c) = ln c; overall utility is in expectation, with no discounting. What is
the aggregate price ratio?

Solution: to begin, we solve an individual consumer’s problem, given by

max
ci

ln ci0 + π ln ci1 + (1− π) ln ci2, s.t. p0c
i
0 + p1c

i
1 + p2c

i
2 ≤ p0ei0 + p1e

i
1 + p2e

i
2 = wi.
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Jumping straight to first-order conditions, we obtain

∂

∂ci0
[L(c)] =

1

ci0
− λp0,

∂

∂ci1
[L(c)] =

π

ci1
− λp1,

∂

∂ci2
[L(c)] =

1− π
ci2
− λp2.

When we substitute these implicit equations for consumption back into the budget constraint, we obtain

λ =
2

wi
.

Consumption then follows the standard Cobb-Douglas pattern,

ci0 =
wi

2p0
, ci1 =

πwi

2p1
, ci2 =

(1− π)wi

2p2
.

To find market prices, we simply substitute back into the market clearing constraint,

c1j + c2j =
Pjw1

2pj
+

Pjw2

2pj
= e1j + e2j ≡ Ej .

We can then see that

pj =
Pj(w1 + w2)

2Ej
;

notice that this form is not quite explicit, since wealth wi is itself a function of prices. However, this
expression is sufficient to obtain the equilibrium price ratios,

pj
pk

=

(
Pj(w

1+w2)
2Ej

)
(

Pk(w1+w2)
2Ek

) =

(
Pj
Pk

)(
Ej
Ek

)−1
.

That is, equilibrium price ratios are related to the underlying probability ratios — which define actuarial
fairness — but are further scaled by the inverse ratio between aggregate endowments in the two dates/states.
It is immediate from this expression that when aggregate endowments are identical in all dates and states,
price ratios are pinned down completely by probability ratios.
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